Math, asked by Finex, 3 days ago

\huge\sf{Question}
If 4 cos² x0 – 1 = 0 and 0 ≤ x ≤ 90, find

(i) x

(ii) sin2 x0 + cos2 x0

(iii) cos2 x0 – sin2 x0.

Don't Spam​

Answers

Answered by kiwi1789
9

Hope it helps. Please mark as brainliest

Attachments:
Answered by Ferocia
136

\huge\color{pink}{Answer}

If 4 cos² x° – 1 = 0 and 0 ≤ x ≤ 90, then :-

(i) x = 60°

Explanation: - \\ 4cos²x° = 0 \\ cos²x°  =  \frac{1}{4}  \\ cos²x° =  (\frac{1}{2} {)}^{2}   \\ cosx° = cos60° \\ x = 60°

(ii) sin²x° + cos²x° = 1

Explanation :  -  \\ The \:  value  \: of  \: x = 60° so,  \\ = sin² 60° + cos²60°  \\ =    (\frac{ \sqrt{3} }{2} {)}^{2}  +  (\frac{1}{2}  {)}^{2}  \\  =  \frac{3}{4} +  \frac{1}{4}  \\  \frac{4}{4}  = 1

(iii) cos²x° - sin²x° = -1/2

Explanation:  -  \\ Since  \: the  \: value  \: of  \: x = 60° so, \\  =cos²60° - sin²60°  \\  (\frac{1}{2} {)}^{2}   -  ( \frac{ \sqrt{3} }{2}  {)}^{2}  \\  \frac{1}{4}  -  ( \frac{3}{4} ) \\  \frac{1}{4}  -  \frac{3}{4}  \\   \frac{ - 2}{4}  =  \frac{ - 1}{2}

Hope this helps, Thank you..!!

Similar questions