Math, asked by Anonymous, 1 month ago

 \huge\text{Question:-}


The velocity  v of a parachute falling vertically satisfies the equation  v \ \ \dfrac{dv}{dx} = g ( 1 - \dfrac{v²}{k²} ) , where  g and  k are constants. If both  v and  x are zero initially, find  v in terms of  x .


@DIFFRENTIAL EQUATIONS
#Class - 12​

Answers

Answered by itsPapaKaHelicopter
16

Answer:

Given:-

 = v \frac{dv}{dx}  = g \left(1 -  \frac{ {v}^{2} }{ {k}^{2} }  \right) \] \: \text{or}  \: v \: dv = g \:  \left( \frac{ {k}^{2}  -  {v}^{2} }{ {k}^{2} }  \right) \] \: dx

ㅤㅤㅤㅤㅤOR

 \frac{v \: dv}{ {k}^{2} -  {v}^{2}  }  =  \frac{g}{ {k}^{2} }  \: dx

\text{Multiplying both  sides by -2 and integrating}

we obtain

[tex]⇒\displaystyle \int\limits_{}^{} \frac{ - 2v \: dv}{ {k}^{2} - {v}^{2} } =

\displaystyle \int\limits_{}^{} - \frac{2g}{ {k}^{2} } dx + c[/tex]

⇒kg( {k}^{2}  -  {v}^{2} ) =  -  \frac{2g}{ {k}^{2} } x + c

\text{when \: } x = 0 ,v = 0  ,\text{therefore  ,}  log \:  {k}^{2} = 0 + c  \:  \:  \: ..(1)

(\text{we \: assume \: that \: }  {k}^{2}  -  {v}^{2}  > 0)

\text{Subtracting \: (2) \: from \: (1)}

we get,

⇒ log( {k}^{2}  -  {v}^{2} ) -  log  \: {k}^{2}  =  -  \frac{2gx}{ {k}^{2} }

⇒ log \left(  \frac{ {k}^{2} -  {v}^{2}  }{ {k}^{2} } \right) \] =  -  \frac{2gx}{ {k}^{2} }

⇒1 -  \frac{ {v}^{2} }{ {k}^{2} }  = e \:  -  \frac{ 2gx}{ {k}^{2} }

⇒ {v}^{2}  =  {k}^{2} (1 -  {e}^{ - 2gx/ {k}^{2} }

⇒v = k \sqrt{1 -  {e}^{ - 2gx/ {k}^{2} } }

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ}

Answered by XxItzCutieXx12
20

Hii Bro...

How are you

Aap Answer Kyo Nhi Dete.. Pls Tell me

Similar questions