Math, asked by abhijithajare1234, 1 month ago


{\huge{\tt{\orange{\fcolorbox{ref}{blue}{\underline{ QUESTION :}}}}}}

Find the coordinates of a point P where the line through A(3,-4,-5) and B(2,-3,1) crosses the plane, passing through the point L(2,2,1),M(3,0,1) and N(4,-1,0).Also find the ratio in which P divides the line segment AB.

No spam​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

➢ The line through A(3,-4,-5) and B(2,-3,1) crosses the plane, passing through the point L(2,2,1),M(3,0,1) and N(4,-1,0).

We know,

➢ Equation of line passing through points (a, b, c) and (d, e, f) is given by

\rm :\longmapsto\:\boxed{ \rm \:\dfrac{x - a}{d - a}  = \dfrac{y - b}{e - b}  = \dfrac{z - c}{f - c}}

➢ Hence, the equation of line passes through (3, - 4, - 5) and (2, - 3, 1) is

\rm :\longmapsto\:\rm \:\dfrac{x - 3}{2 - 3}  = \dfrac{y + 4}{ - 3  + 4}  = \dfrac{z + 5}{1 + 5} = k

\rm :\longmapsto\:\rm \:\dfrac{x - 3}{- 1}  = \dfrac{y + 4}{1}  = \dfrac{z + 5}{6} = k

➢ So, the coordinates of any point P on the line AB be

\bf :\longmapsto\:Coordinates \: of \: P = ( - k + 3, \: k - 4, \: 6k - 5)

Now,

Equation of plane passes through the point L (2,2,1), M (3,0,1) and N (4,-1,0) is

\rm \:  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}x - 2&y - 2&z - 1\\3 - 2&0 - 2&1 - 1\\4 - 2& - 1 - 2&0 - 1\end{array}\right | \end{gathered} = 0

\rm \:   \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}x - 2&y - 2&z - 1\\1&- 2&0\\2& -3&- 1\end{array}\right | \end{gathered} = 0

\rm :\longmapsto\:(x - 2)(2 - 0) - (y - 2)( - 1 - 0) + (z - 1)( - 3 + 4) = 0

\rm :\longmapsto\:2x - 4 + y - 2 + z - 1 = 0

\rm :\longmapsto\:2x  + y + z - 7 = 0

Now, P lies in this plane,

So, P must satisfy the equation of plane.

\rm :\longmapsto\:2( - k + 3)  + k - 4 + 6k - 5 - 7 = 0

\rm :\longmapsto\:- 2k +6  +7 k - 16 = 0

\rm :\longmapsto\:5k - 10 = 0

\bf\implies \:k = 2

Hence,

\rm :\longmapsto\:Coordinates \: of \: P = ( - 2 + 3, \: 2 - 4, \: 12 - 5)

\bf :\longmapsto\:Coordinates \: of \: P = ( 1, \:  - 2, \:7)

Let assume that

P ( 1, - 2, 7 ) divides the line passes through (3, - 4, - 5) and (2, - 3, 1) in the ratio n : 1.

So, By Section Formula,

\rm :\longmapsto\:(1, - 2,7) = \bigg(\dfrac{2n + 3}{n + 1}, \:  \dfrac{ - 3n - 4}{n + 1}, \:  \dfrac{n - 5}{n + 1}  \bigg)

So, on comparing x - coordinates on both sides, we get

\rm :\longmapsto\:\dfrac{2n + 3}{n + 1}  = 1

\rm :\longmapsto\:2n + 3 = n + 1

\rm :\longmapsto\:2n -  n = 1 - 3

\rm :\longmapsto\:n =  - 2

This implies, P 1, - 2, 7 ) divides the line passes through (3, - 4, - 5) and (2, - 3, 1) in the ratio 2 : 1 externally.

Attachments:
Similar questions