On comparing the ratios a1/a2, b1/b2, and c1/c2, find out whether the following pair of linear equations are consistent, or inconsistent.
(i) 3x + 2y = 5 ; 2x – 3y = 7
(ii) 2x – 3y = 8 ; 4x – 6y = 9
Answers
Answer:
(i) Given : 3x + 2y = 5 or 3x + 2y – 5 = 0
and 2x – 3y = 7 or 2x – 3y – 7 = 0
Comparing the above equations with a1x + b1y + c1=0
And a2x + b2y + c2 = 0
We get,
a1 = 3, b1 = 2, c1 = -5
a2 = 2, b2 = -3, c2 = -7
a1/a2 = 3/2, b1/b2 = 2/-3, c1/c2 = -5/-7 = 5/7
Since, a1/a2≠b1/b2 the lines intersect each other at a point and have only one possible solution.
Hence, the equations are consistent.
(ii) Given 2x – 3y = 8 and 4x – 6y = 9
Therefore,
a1 = 2, b1 = -3, c1 = -8
a2 = 4, b2 = -6, c2 = -9
a1/a2 = 2/4 = 1/2, b1/b2 = -3/-6 = 1/2, c1/c2 = -8/-9 = 8/9
Since, a1/a2=b1/b2≠c1/c2
Therefore, the lines are parallel to each other and they have no possible solution. Hence, the equations are inconsistent.
- Check whether the following pair of linear equations are consistent or inconsistent.
First of all, convert the given equation in the form of
And
So, we get,
And
Comparing with equations (i) and (ii), we get,
Therefore, we get,
Hence, lines are consistent.
Again, convert the equations in standard form.
We get,
And,
Now,
We get,
Hence, lines are inconsistent.