Physics, asked by Anonymous, 10 months ago

 \huge\underline{\bf \orange{Question :}}

A body of mass 1000kg travelling at a speed of 36km/h is brought to rest in 50s .The average retarding force on the body will be​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
8

\huge\sf\pink{Answer}

☞ Force = -200 N

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Mass (m) = 1000 kg

✭ Initial Velocity (u) = 36 km/h

✭ Final Velocity (v) = 0 m/s

✭ Time (t) = 50 sec

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Avg retardation force?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

Do we shall first find the acceleration of the body, for that we may use the first equation of motion, i.e,

\underline{\boxed{\sf v = u+at}}

◕ v = 0 m/s

◕ u = 36 km/h = \sf 36 \times \dfrac{5}{18} = 10 m/s

◕ t = 50 sec

Substituting the values,

\sf v = u+at

\sf 0 = 10+50\times a

\sf -10 = 50a

\sf \dfrac{-10}{50} = a

\sf \red{a = -0.2 \ m/s^2}

So now that we have the accelerataion the body the regarding force will be given by,

\underline{\boxed{\sf F = ma}}

Substituting the values,

\sf F = ma

\sf F = 1000 \times -0.2

\sf \orange{F = -200 \ N}

━━━━━━━━━━━━━━━━━━

Answered by Blossomfairy
6

Given :

  • Mass (m) = 1000 kg
  • Time (t) = 50 seconds
  • Initial velocity (u) = 36 km/h
  • Final velocity (v) = 0 m/s

To find :

  • Average retarding force

According to the question,

At first we have to km/h into m/s

 \sf{ \bullet \:   \frac{36 \times 1000}{60  \times 60}  } =   \cancel\frac{36000}{3600}  {}^{ \:  \: 10}  = 10 \: ms {}^{ - 1}  \orange \bigstar

Now we will use the formula :

\star \boxed{\sf \red{ v = u + at }}

Now we have to put the value according to the formula,

\sf { v = u + at }

 \sf{ \:  \:  : \implies \: 0 = 10 + a(50) }

\sf{ \:  \:  : \implies -10 = 50a }

  \sf{ \:  \:  : \implies    \cancel\frac{ - 10}{50} {}^{ \:  \: 0.2}    = a}

\sf{ \:  \:  :  \implies - 0.2\:ms {}^{ - 2} = a} \:  \orange \bigstar

Now we will calculate the retarding force :

\star \boxed{ \sf \red{F = ma}}

  • F stands for Force
  • m stands for Mass
  • a stands for Acceleration

Now according to the formula,

 \sf{ \:  \:  :  \implies \: 1000 \times  - 0.2}

\sf{ \:  \:  : \implies \:  - 200  \: N}   \: \orange \bigstar

So,the retarding force is -200 N..

Similar questions