Math, asked by Anonymous, 1 year ago

\huge\underline\mathfrak\green{Question\:-}



If sinØ + 2cosØ = 1, find the value of 2sinØ - cosØ.


<marquee> No spam ❌❌❌​

Answers

Answered by Anonymous
75

Answer:

2 sin Ø - cos Ø = ± 2

Step-by-step explanation:

Given :

sin Ø + 2 cos Ø =  1

Squaring on both side :

sin² Ø + 4 cos² Ø + 4 sin Ø cos Ø   =  1

Now using sin² Ø = 1 - cos² Ø  &  cos² Ø = 1 - sin² Ø

1 - cos² Ø + 4 ( 1 - sin² Ø ) + 4 sin Ø cos Ø = 1

- cos² Ø + 4  -  4 sin² Ø + 4 sin Ø cos Ø = 1 - 1

- cos² Ø   -  4 sin² Ø + 4 sin Ø cos Ø + 4 = 0

4 sin² Ø + cos² Ø - 4 sin Ø cos Ø + 4 = 4

( 2 sin Ø - cos Ø )² = 4

2 sin Ø - cos Ø = ± 2

Hence we get answer .

Answered by lAravindReddyl
56

Answer:-

\bold{ 2sin \theta - cos \theta = \pm 2 }

Explanation:-

Given:-

 sin \theta + 2cos \theta = 1

To Find:-

value of  2sin \theta - 2cos \theta

Solution:-

 sin \theta + 2cos \theta = 1

Squaring on both sides

{( sin \theta + 2cos \theta)}^{2} = {1}^{2}

{ sin}^{2} \theta + 4{cos }^{2} \theta  + 4 cos \theta. sin \theta= 1

1-{ cos}^{2} \theta + 4(1-{sin}^{2} \theta  )+ 4 cos \theta. sin \theta= 1

 1- {cos}^{2} \theta + 4-4{sin}^{2} \theta  + 4 cos \theta. sin \theta= 1

 {cos}^{2} \theta + 4{sin}^{2} \theta  -  4 cos \theta. sin \theta -5 = -1

{( 2sin \theta - cos \theta)}^{2}  = - 1 + 5

{( 2sin \theta - cos \theta)}^{2}  = 4

Taking Square root on both sides

 2sin \theta - cos \theta =\pm 2

Hence,

\bold{ 2sin \theta - cos \theta = \pm 2 }

•••♪

Similar questions