Math, asked by Braɪnlyємρєяσя, 5 months ago

 \huge \underline \mathfrak \pink{Hey :) \: Questions \: }


★ ASAP! CAN U SOLVE IT :(


★ GIVE FULL EXPLANATION PLOX ✔​

Attachments:

Answers

Answered by sreekarreddy91
5

Given, equation of line :-

 \bf  \frac{x \:  - \:  3}{2}  =   \frac{y  \:  -  \: 3}{1}  =  \frac{z}{1}  = x

\bf  \therefore \:  x = 2r + 3

\bf y = r + 3

\bf z = r

So, (2r + 3, r + 3, r) is the direction ratio of two lines that intersect at

 \bf  \frac{ \pi}{3}

with given line & passes through (0,0).

∴ Angle between the line & unknown lines is

 \bf  \frac{ \pi}{3}

Direction ratio of line is (2, 1, 1)

 \bf ∣a∣ \:  =  \sqrt{ {2}^{2} +  {1}^{2}  +  {1}^{2}  }  =  \sqrt{6}

 \bf ∣b∣ \: = \sqrt{(2r \:  + \:  3) ^{2}  }  \:  +  \: (r \:  +  \: 3)^{2}   \: +  \:  {r}^{2}  =  \sqrt{ {6r}^{2} \:  +  \: 18  \:   + \: 18 }

 \bf \cos  \frac{ \pi}{3}  =  \frac{a\: ⋅ \: b}{∣a∣∣b∣}

 \bf  =   \frac{1}{2}  =  \frac{4r \:  +  \: 6  \: + \:  r \:  + \:  3 \:  + \:  r}{ \sqrt{6} \sqrt{ {6r}^{2} \:  +  \: 18r \:  + \:  18 }  }

 \bf  =  \frac{1}{2}  =  \frac{6r \:  +  \: 9}{6  \sqrt{ {r}^{2} \:  + \: 3r \:  +  \: 3  }  }

 \bf \therefore  \sqrt{ {r}^{2}  \:  +  \: 3r \:  +  \: 3}  = 3r \:  +  \: 3

 \bf  =  {r}^{2} \:  +  \: 3r \:  +  \:  3 \:  =  {4r}^{2}  \:  +  \: 9 \:  +  \: 12r

 \bf  = 0 =  {3r}^{2} + \: 6 \: + \: 9r

 \bf =0= {r}^{2} \:  + \: 3r \: + \: 2

  \bf\therefore(r+1)(r+2)=0

So, direction ratios are (-1 , 1, -2) and (1, 2, -1) lines are

 \bf  \frac{x \:  -  \: 0}{ - 1}  =   \frac{y \:  -  \: 0}{1}   =  \frac{z \:  -  \: a}{ - 2}  \: and \:  \frac{x \:  -  \: 0}{1}  =  \frac{y \:  -  \: 0}{2}  =  \frac{z \:  -  \: 0}{ - 1} .

Answered by Talentedgirl1
2

Answer: 104.72%

\small\sf\underline\blue{Given \:   \: equation  \: of \:  the \:  line  \: </p><p>is: }

\small\tt{ \frac{x - 3}{2} } =  \frac{y - 3}{1}  =  \frac{z}{1}  = λ

\small\sf{So, direction  \: ratios  \: of \:  the \:  line  \: are (2, 1, 1)} =  a_{1},  b_{1}, \: c_{1},

</p><p>\small\sf\underline\green{Any  \: point  \: on  \: the  \: given \:  line  \: </p><p>is  \: }P (2λ + 3, λ + 3, λ) ≡

a_{2}  \:  b_{2} \:  c_{2}

\small\fbox{So, direction ratios of OP are:</p><p>(2λ + 3, λ + 3, λ) ≡ }  a_{2} \: b_{2}</p><p> \: c_{2}

Now, angle between given line is x/3.

Rest answer is in these 2 images.

Please refer to that for your answer.

Thanks....

Attachments:
Similar questions