Math, asked by tejeswarteju, 2 months ago


\huge\underline\mathfrak\pink{Question}
IN THE ATTACHMENT.
PLZ HELP ME SOLVE THIS.
NO SPAM!!
WITH FULL PROCESS.​

Attachments:

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \rm \int  \frac{dx}{ {x}^{4}  +  {x}^{2}  + 1}

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle \rm \int  \frac{dx}{ {x}^{4}  +  {x}^{2}  + 1}

can be rewritten as

\rm \:  =  \:  \: \dfrac{1}{2} \displaystyle \rm \int  \frac{2}{ {x}^{4}  +  {x}^{2}  + 1} \: dx

\rm \:  =  \:  \: \dfrac{1}{2} \displaystyle \rm \int  \frac{1 + 1}{ {x}^{4}  +  {x}^{2}  + 1} \: dx

\rm \:  =  \:  \: \dfrac{1}{2} \displaystyle \rm \int  \frac{1 + 1 +  {x}^{2}  -  {x}^{2} }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

\rm \:  =  \:  \: \dfrac{1}{2} \displaystyle \rm \int  \frac{({x}^{2}  + 1) -  ({x}^{2} - 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

\rm \:  =  \:  \: \dfrac{1}{2} \displaystyle \rm \int  \frac{({x}^{2}  + 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx  -  \dfrac{1}{2} \displaystyle \rm \int  \frac{({x}^{2} -  1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

\rm \:  =  \:  \: \dfrac{1}{2} \: I_1 - \dfrac{1}{2} \: I_2

So,

\rm :\longmapsto\:\rm \: I =  \:  \: \dfrac{1}{2} \: I_1 - \dfrac{1}{2} \: I_2 -  -  - (1)

where,

\rm :\longmapsto\:I_1 =  \displaystyle \rm \int  \frac{({x}^{2}  + 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

and

\rm :\longmapsto\:I_2 =  \displaystyle \rm \int  \frac{({x}^{2} - 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

Now,

Consider,

\rm :\longmapsto\:I_1 =  \displaystyle \rm \int  \frac{({x}^{2}  + 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

Divide numerator and denominator by x^2, we get

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1 +  \dfrac{1}{ {x}^{2} } }{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } + 1 } dx

can be rewritten as

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1 +  \dfrac{1}{ {x}^{2} } }{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } - 2 + 2 + 1 } dx

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1 +  \dfrac{1}{ {x}^{2} } }{ {\bigg(x - \dfrac{1}{x}  \bigg) }^{2}  + 3} dx

Now, we use method of Substitution,

 \red{\rm :\longmapsto\:Put \: x - \dfrac{1}{x} = y}

 \red{\rm :\longmapsto\:\bigg(1  +  \dfrac{1}{ {x}^{2} }  \bigg)dx = dy}

So, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{dy}{ {y}^{2}  + 3}

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{dy}{ {y}^{2}  +  {( \sqrt{3} )}^{2} }

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3} }  {tan}^{ - 1} \dfrac{y}{ \sqrt{3} }  + c

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3} }  {tan}^{ - 1} \dfrac{x - \dfrac{1}{x} }{ \sqrt{3} }  + c

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3} }  {tan}^{ - 1} \dfrac{ {x}^{2}   - 1}{ \sqrt{3}x }  + c

So,

\rm :\longmapsto\:I_1 =  \:  \: \dfrac{1}{ \sqrt{3} }  {tan}^{ - 1} \dfrac{ {x}^{2}   - 1}{ \sqrt{3}x }  + c -  -  - (2)

Now, Consider

\rm :\longmapsto\:I_2=  \displaystyle \rm \int  \frac{({x}^{2} - 1) }{ {x}^{4}  +  {x}^{2}  + 1} \: dx

Divide numerator and denominator by x^2, we get

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1  -   \dfrac{1}{ {x}^{2} } }{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } + 1 } dx

can be rewritten as

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1  -   \dfrac{1}{ {x}^{2} } }{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } + 2 - 2 + 1 } dx

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{1  -   \dfrac{1}{ {x}^{2} } }{ {\bigg(x  + \dfrac{1}{x}  \bigg) }^{2} - 1} dx

Now, we use method of Substitution, we get

 \red{\rm :\longmapsto\:Put \: x  +  \dfrac{1}{x} = y}

 \red{\rm :\longmapsto\:\bigg(1  -   \dfrac{1}{ {x}^{2} }  \bigg)dx = dy}

So, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle \rm \int  \frac{dy}{ {y}^{2} - 1}

\rm \:  =  \:  \: \dfrac{1}{2 \times 1}log \:  \bigg |\dfrac{y - 1}{y + 1}  \bigg|  + d

\rm \:  =  \:  \: \dfrac{1}{2}log \:  \bigg |\dfrac{x + \dfrac{1}{x}  - 1}{x + \dfrac{1}{x} + 1}  \bigg|  + d

\rm \:  =  \:  \: \dfrac{1}{2}log \:  \bigg |\dfrac{ {x}^{2}  + 1  - x}{ {x}^{2}  + 1 + x}  \bigg|  + d

Hence,

\rm :\longmapsto\:I_2=  \:  \: \dfrac{1}{2}log \:  \bigg |\dfrac{ {x}^{2}  + 1  - x}{ {x}^{2}  + 1 + x}  \bigg|  + d -  -  - (3)

Now, on substituting the values from equation (2) and equation (3) in equation (1), we get .

{ \rm \: I = \dfrac{1}{2\sqrt{3} }  {tan}^{ - 1} \dfrac{ {x}^{2}   - 1}{ \sqrt{3}x }  + c  - \dfrac{1}{4}log \:  \bigg |\dfrac{ {x}^{2}  + 1  - x}{ {x}^{2}  + 1 + x}  \bigg|  + d}

Hence,

{ \rm \: I = \dfrac{1}{2\sqrt{3} }  {tan}^{ - 1} \dfrac{ {x}^{2}   - 1}{ \sqrt{3}x }  - \dfrac{1}{4}log \:  \bigg |\dfrac{ {x}^{2}  + 1  - x}{ {x}^{2}  + 1 + x}  \bigg|  + e}

where, c + d = e

Formula used :-

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ {x}^{2} +  {a}^{2}}  =  \frac{1}{a}tan^{ - 1} \frac{x}{a} + c}

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ {x}^{2} - {a}^{2}}  =  \frac{1}{2a}log | \frac{x - a}{x + a} |  + c}

\boxed{ \rm \: \dfrac{d}{dx}x = 1}

\boxed{ \rm \: \dfrac{d}{dx} \frac{1}{x}  =  -  \frac{1}{ {x}^{2} } }

\boxed{ \rm \:  {x}^{2} + 2xy +  {y}^{2}  =  {(x + y)}^{2}}

\boxed{ \rm \:  {x}^{2}  -  2xy +  {y}^{2}  =  {(x  -  y)}^{2}}

Answered by Tanushree1200
1

ʜʟʟ !! :)

ɪ ʜ ɪɴ ʙʀɪɴʟy ɢɪɴ

Similar questions