Math, asked by Queenxx, 10 months ago





\huge\underline\mathtt{Solve it guys}


Attachments:

Answers

Answered by Anonymous
6

\huge\underline\mathtt\color{crimson}{♡Be brainly♡}

Attachments:
Answered by ItsTogepi
1

\huge\underline\mathtt{Solution: }

Question

If x \infty y ,let us prove that x+y  \infty  x-y.

Answer:

x \infty y

 \implies x  = ky[Where \: K \: is \: non-zero\: constant]  \\ \implies \frac{x}{y}  =  \frac{k}{1}  \\ \implies   \frac{x + y}{x - y}  =  \frac{k + 1}{k - 1}[Componendo\: and\: Dividendo]

 \implies  x + y =  \frac{k + 1}{k - 1} (x - y) \\Since,\:  x + y \infty x - y

(Here,\frac{k + 1}{k - 1} \:is \: non-zero \: constant

(Proved)

\rule{300}{2}

Question:

If x \infty y \: and \: u \infty z,let us prove that xu \infty yz and  \frac{x}{u}  \infty  \frac{y}{z}

Answer:

Prove 1

x \infty y , u \infty z

\implies x= k y----------(1)

And,

\implies u= l z---------(2)

Now,by multiplying both the equations, we get,

 \implies  xu = ky.lz \\ \implies xu = kl.yz \\ xu \infty yz

(Here,kl =non-zero constant

(Proved)

Prove 2

x \infty y , u \infty z

\implies x= k y----------(1)

And,

\implies u= l z---------(2)

Now,by dividing both the equations, we get,

 \implies \frac{x}{u}  =  \frac{ky}{lz}  \\ \implies  \frac{x}{u} =  \frac{k}{l}  . \frac{y}{z}  \\ \implies =  \frac{x}{u}  \infty  \frac{y}{z}

(Here,\frac{k}{l}  is non-zero constant)

(Proved)

\rule{300}{2}

\huge\underline\mathtt{ThankUhh}

Similar questions