Physics, asked by Anonymous, 7 months ago

\huge\underline{QuEStiON}

Answer this question
Spammers Stay Away​

Attachments:

Answers

Answered by rocky200216
14

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • The S.I unit of energy is \bf\red{kg.m^2.s^{-2}} .

  • The S.I unit of Speed is \bf\red{m.s^{-1}} .

  • The S.I unit of acceleration is \bf\red{m.s^{-2}}

  • m stands for mass of the body .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The formulae for kinetic energy given in the question, rule out by dimensional arguments .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

We know that,

\huge\red\checkmark According to the principle of homogeneity of dimensional analysis, the dimensions of each term on both the sides of the correct formula or equation will be the same .

✞︎ The dimensional formula for K.E is \bf\blue{[M^1\:L^2\:T^{-2}]} .

☯︎ According to the question,

  • The dimensions of quantity on R.H.S of different equations are same, i.e. \bf{[M^1\:L^2\:T^{-2}]} .

Now, we analyze all the five given options dimensionally .

(a) \rm\bold{K\:=\:m^2\:v^3} \\

Where,

  • \bf\red{m} = Mass

  • \bf\red{v} = Velocity

\rm{:\implies\:K\:=\:[M]^2\:[L^1\:T^{-1}]^3\:} \\

\bf\purple{:\implies\:K\:=\:[M^2\:L^3\:T^{-3}]\:} \\

\huge\red\therefore This is not clearly match with the dimensional formula of K.E .

(b) \rm\bold{K\:=\:(1/2)\:m\:v^2} \\

[NOTE → Constant is a dimension less quantity .]

\rm{:\implies\:K\:=\:[M]\:[L^1\:T^{-1}]^2\:} \\

\bf\purple{:\implies\:K\:=\:[M^1\:L^2\:T^{-2}]\:} \\

\huge\red\therefore This is obviously correct match with the dimensional formula of K.E .

(c) \rm\bold{K\:=\:m\:a} \\

Where,

  • \bf\red{m} = Acceleration

\rm{:\implies\:K\:=\:[M]\:[L^1\:T^{-2}]\:} \\

\bf\purple{:\implies\:K\:=\:[M^1\:L^1\:T^{-2}]\:} \\

\huge\red\therefore This is not clearly match with the dimensional formula of K.E .

(d) \rm\bold{K\:=\:(3/16)\:m\:v^2} \\

[NOTE → Constant is a dimension less quantity .]

\rm{:\implies\:K\:=\:[M]\:[L^1\:T^{-1}]^2\:} \\

\bf\purple{:\implies\:K\:=\:[M^1\:L^2\:T^{-2}]\:} \\

\huge\red\therefore This is obviously correct match with the dimensional formula of K.E .

(e) \rm\bold{K\:=\:(1/2)\:m\:v^2\:+\:m\:a} \\

\rm{:\implies\:K\:=\:[M]\:[L^1\:T^{-1}]^2\:+\:[M]\:[L^1\:T^{-2}]\:} \\

\bf\purple{:\implies\:K\:=\:[M^1\:L^2\:T^{-2}]\:+\:[M^1\:L^1\:T^{-2}]\:} \\

NOTE → Here first term in the R.H.S is "(1/2) mv²" which will give the dimension of K.E, but second term in the R.H.S is "ma" which will give the dimension of force .

\huge\red\therefore To make the entire expression is dimensionally incorrect .

__________________________

\huge\blue\therefore The correct options to be chosen here are (a), (c) & (e) as all these can be ruled out based on dimensional arguments .

Similar questions