solve question no a
no a solve
Attachments:
Answers
Answered by
2
sin∅ = m/n
m = n sin∅ ...(1)
√(n² - m²)tan∅ = m
LHS
= √(n² - n²sin²∅) tan∅
= √[n²(1 - sin²∅)] tan∅
= √n²cos²∅ × tan∅ [• (1 - sin²∅ = cos²∅)]
= n × cos∅ × sin∅/cos∅
= n sin∅
= m ....[From (1)]
Hence Proved ... ✓✓
Answered by
71
Answer :-
sin∅ = m/n
m = n sin∅ ...(1)
√(n² - m²)tan∅ = m
LHS
= √(n² - n²sin²∅) tan∅
= √[n²(1 - sin²∅)] tan∅
= √n²cos²∅ × tan∅ [• (1 - sin²∅ = cos²∅)]
= n × cos∅ × sin∅/cos∅
= n sin∅
= m ....[From (1)]
Hence Proved ... ✓✓
Similar questions