Math, asked by Anonymous, 1 month ago


if \: 3 \: x =  sec(theta) and \:  \frac{3}{x}  = tan \: (theta) \: then \: 9( {x}^{2}  -  \frac{1}{ {x}^{2} } ) \:  \:
Answer only if u know.

only Brainly mods and stars are allowed to answer.​

Answers

Answered by mathdude500
20

 \green{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:3x = sec\theta  \:  \:  \: and \:  \:  \:  \dfrac{3}{x} = tan\theta

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:9\bigg[ {x}^{2} -  \dfrac{1}{ {x}^{2} } \bigg]

 \blue{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:3x = sec\theta

and

\rm :\longmapsto\:\dfrac{3}{x}  = tan\theta

We know that,

\red{ \boxed{ \sf{ \: {sec}^{2}\theta  -  {tan}^{2}\theta  = 1}}}

So, on substituting the values, we get

\rm :\longmapsto\: {(3x)}^{2} -  {\bigg[\dfrac{3}{x} \bigg]}^{2}  = 1

\rm :\longmapsto\: {9x}^{2} - \dfrac{9}{ {x}^{2} } = 1

\rm :\longmapsto\:9\bigg[ {x}^{2} -  \dfrac{1}{ {x}^{2} } \bigg] = 1

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:  \:  \:9\bigg[ {x}^{2} -  \dfrac{1}{ {x}^{2} } \bigg] \:  \:  =  \:  \: 1 \:  \: }}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by kamalhajare543
12

Answer:

Answer:

The\: value \:of \:9(x^{2}-\frac{1}{x^{2}}) = 1

Step-by-step explanation:

 \boxed{3x=sec\theta ---(1)}

 \boxed{\frac{3}{x}=tan\theta--(2)}

 \boxed{The  \: value \:  of \:  9 \: (x {}^{2} -  \frac{1}{x {}^{2} }  )}

 \:  \:  =  >   \boxed{9x {}^{2}  -  \frac{9}{ {x}^{2} } }

 \:  \:  \:  =  >  \boxed{(3x {)}^{2} -  (\frac{3}{x} ) {}^{2} }

 =  \boxed{ (secθ ) {}^{2}  - ( \tanθ) {}^{2} }

  \pink{=  \boxed{\sec {}^{2} θ -  \tan {}^{2} θ} = 1}

/* By Trigonometric identity:

\boxed {sec^{2}\theta-tan^{2}\theta=1}

Therefore,

The\: value \:of \:9[x^{2}-\frac{1}{x^{2}}]=1

Hence this is Answer.

Similar questions