Math, asked by gayathriandsruthifun, 3 months ago


if \: a \:  - b  = 16 \: and \:  {a}^{2}   +  {b}^{2}  = 400. \: find \: ab

Answers

Answered by rsagnik437
60

Given:-

→ Value of (a - b) is 16 .

→ Value of ( + ) is 400.

To find:-

→ Value of ab.

Solution:-

In order to solve this problem, we have to use the identity :-

(a - b)² = + - 2ab

Now by substituting values in the above identity, we get :-

⇒ (16)² = 400 - 2ab

⇒ 256 = 400 - 2ab

⇒ 256 - 400 = -2ab

⇒ -144 = -2ab

⇒ ab = -144/-2

⇒ ab = 72

Thus, value of 'ab' is 72 .

Some Extra Information:-

Some algebraic identities that are used to solve these kinds of problems are :-

• (a + b)² = a² + b² + 2ab

• (a² - b²) = (a + b)(a - b)

• (a + b)³ = a³ + b³ + 3ab(a + b)

• (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by Oneioiic14
9

Given :-

  • a - b = 16

  • a² + b ² = 400

To find :-

  • ab.

Solution :-

\large\star{\boxed{\sf{\blue{ ( a - b) ² = a² + b² - 2ab}}}}

\tt{ ⟹ \ ( 16 )² \ = \ 400 \ - \ 2ab}

\tt{⟹ \ 256 \ = \ 400 \ - \ 2ab}

\tt{⟹ \ 256 \ - \ 400 \ = \  - \ 2ab }

\tt{⟹ \ - 144 \ = \ - 2ab }

\tt{⟹ \ ab \  = \  72}

\rm\bigstar\purple{ \ Ab \  = \  72}

Similar questions