Answers
Answered by
1
Here is solution of your question
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
a²+b²+c²=83
(a+b+c)²-2ab-2bc-2ca=83
15²-2(ab+bc+ca)=83
-2(ab+bc+ca)=83-225
-2(ab+bc+ca) =-142
ab+bc+ca=-142/-2
=71
then
15(83-(71)
15×12
180Ans
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
a²+b²+c²=83
(a+b+c)²-2ab-2bc-2ca=83
15²-2(ab+bc+ca)=83
-2(ab+bc+ca)=83-225
-2(ab+bc+ca) =-142
ab+bc+ca=-142/-2
=71
then
15(83-(71)
15×12
180Ans
Answered by
1
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!
Similar questions