Math, asked by sarojreddy39061, 1 year ago

[tex] If A=\left[\begin{array}{ccc}Sinθ&Cosθ\\-Cosθ&Sinθ\end{array}\right], Prove that A⁻¹=Aᵀ. [\tex]

Answers

Answered by MaheswariS
0

Answer:

\bf\:A^{-1}=A^T

Step-by-step explanation:

 A=\left[\begin{array}{cc}sin\theta&cos\theta\\-cos\theta&sin\theta\end{array}\right]

 A^T=\left[\begin{array}{cc}sin\theta&-cos\theta\\cos\theta&sin\theta\end{array}\right] ...................(1)

|A|=\left|\begin{array}{cc}sin\theta&cos\theta\\-cos\theta&sin\theta\end{array}\right|

|A|=sin^2\theta+cos^2\theta=1\neq\:0

\therefore\:A^{-1}\:exists

 adjA=\left[\begin{array}{cc}sin\theta&-cos\theta\\cos\theta&sin\theta\end{array}\right]

Then,

A^{-1}=\frac{1}{|A|}adjA

A^{-1}=\frac{1}{1}adjA

A^{-1}=adjA

A^{-1}=\left[\begin{array}{cc}sin\theta&-cos\theta\\cos\theta&sin\theta\end{array}\right] ..............(2)

From (1) and (2), we get

\bf\:A^{-1}=A^T

Hence proved

Similar questions