Math, asked by goraigopal385, 2 months ago

if \: a = \sqrt{2 } + 1 \: find \: (a - 1/a) {}^{2}

Answers

Answered by Anonymous
7

Step-by-step explanation:

 \sf{ \because{a =  \sqrt{2}  + 1}}

 \sf{ \therefore \:  \frac{1}{a}  =  \frac{1 }{ \sqrt{2} + 1 } }

 \sf \: On  \: rationalise \: the \:  denominator

  \sf \:  =  \frac{1}{ \sqrt{2} + 1 }  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }

 \sf \:  =  \frac{ \sqrt{2}  - 1}{ {( \sqrt{2} )}^{2} -  {1}^{2}  }

  \sf \:  =  \frac{ \sqrt{2}  - 1}{2 - 1}

 \sf \:   = \sqrt{2}  - 1

 \sf \: Now,  \: a -  \frac{1}{a}  =  \sqrt{2}  + 1 - ( \sqrt{2}  - 1)

 \sf \:  =  \sqrt{2}  + 1 -  \sqrt{2}  + 1

 \sf  = \: 1 + 1 +  \sqrt{2}  -  \sqrt{2}

 \sf \:  = 2

I hope it is helpful

Answered by RexJohn064
0

Answer:

if \: a = \sqrt{2 } + 1 \: find \: (a - 1/a) {}^{2} is the correct amswer

Step-by-step explanation:

hi kaise ho tum

Similar questions