Math, asked by potterhead32, 2 months ago


if \: a \:  =   \sqrt{6}  -  \sqrt{3}  \: and   \: b \:  =  \:  \sqrt{3}  -  \sqrt{2}  \: and \: c \:  =  \:  \sqrt{2}  -  \sqrt{6}  \: then \: find \: the \: value \: of \:  {a}^{3}  +  \:  {b}^{3}  +  {c}^{3}  - 2abc \: .
plz \: answer \: with \: correct \: explanatiom

Answers

Answered by 10231
2

Step-by-step explanation:

\sf{\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } = a + b \sqrt{15} }

5

+

3

5

3

=a+b

15

rationalise the denominator

\sf\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = a + b \sqrt{15}

5

+

3

5

3

×

5

3

5

3

=a+b

15

\sf\frac{{ (\sqrt{5 } - \sqrt{3})}^{2} }{{( \sqrt{5})}^{2} - {(\sqrt{3}) }^{2}} = a + b \sqrt{15}

(

5

)

2

−(

3

)

2

(

5

3

)

2

=a+b

15

\sf\frac{{ {(\sqrt{5 } )}^{2} + (\sqrt{3})}^{2} - 2( \sqrt{5} )( \sqrt{3} )}{{5} - 3} = a + b \sqrt{15}

5−3

(

5

)

2

+(

3

)

2

−2(

5

)(

3

)

=a+b

15

\sf\frac{5 + 3 - 2\sqrt{15}}{5 - 3} = a + b \sqrt{15}

5−3

5+3−2

15

=a+b

15

\sf\frac{8 - 2\sqrt{15}}{2} = a + b \sqrt{15}

2

8−2

15

=a+b

15

\sf{ \frac{2(4 + \sqrt{15} )}{2} = a + b \sqrt{15} }

2

2(4+

15

)

=a+b

15

\sf{4 + \sqrt{15} = a + b \sqrt{15} }4+

15

=a+b

15

on comparing both sides

\begin{gathered} \sf{a = 4} \\ \sf{b = 1}\end{gathered}

a=4

b=1

Answered by negivardhan993
1

Explanation:

a {}^{3}  + b {}^{3}  + c {}^{3}  - 2abc

 = a { }^{3}  + b {}^{3}  + c {}^{3}  - 3abc + abc

 = (a + b + c)(a {}^{2}  + b {}^{2}  + c {}^{2}  - ab - bc - ca) + abc

 = ( \sqrt{6}  -  \sqrt{3}  +  \sqrt{3}  -  \sqrt{2}  +  \sqrt{2}  -  \sqrt{6} )( {a}^{2}  + b {}^{2}  + c {}^{2}  - ab - bc - ca)  + abc

 = 0( {a}^{2}  + b {}^{2}  + c {}^{2}  - ab - bc - ca) + abc

 = 0 + abc

 = abc

 = ( \sqrt{6}  -  \sqrt{3} )( \sqrt{3}  -  \sqrt{2} )( \sqrt{2}  -  \sqrt{6} )

Similar questions