Answers
Step-by-step explanation:
\sf{\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } = a + b \sqrt{15} }
5
+
3
5
−
3
=a+b
15
rationalise the denominator
\sf\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = a + b \sqrt{15}
5
+
3
5
−
3
×
5
−
3
5
−
3
=a+b
15
\sf\frac{{ (\sqrt{5 } - \sqrt{3})}^{2} }{{( \sqrt{5})}^{2} - {(\sqrt{3}) }^{2}} = a + b \sqrt{15}
(
5
)
2
−(
3
)
2
(
5
−
3
)
2
=a+b
15
\sf\frac{{ {(\sqrt{5 } )}^{2} + (\sqrt{3})}^{2} - 2( \sqrt{5} )( \sqrt{3} )}{{5} - 3} = a + b \sqrt{15}
5−3
(
5
)
2
+(
3
)
2
−2(
5
)(
3
)
=a+b
15
\sf\frac{5 + 3 - 2\sqrt{15}}{5 - 3} = a + b \sqrt{15}
5−3
5+3−2
15
=a+b
15
\sf\frac{8 - 2\sqrt{15}}{2} = a + b \sqrt{15}
2
8−2
15
=a+b
15
\sf{ \frac{2(4 + \sqrt{15} )}{2} = a + b \sqrt{15} }
2
2(4+
15
)
=a+b
15
\sf{4 + \sqrt{15} = a + b \sqrt{15} }4+
15
=a+b
15
on comparing both sides
\begin{gathered} \sf{a = 4} \\ \sf{b = 1}\end{gathered}
a=4
b=1