Math, asked by gogoistic, 2 months ago


 if \: \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: eqaution \:  {y}^{2}  - 5y + 9 = 0 \: then \: value \: of \:  \sqrt{ \frac{ \alpha }{ \beta } }  \:  +  \sqrt{ \frac{ \beta }{ \alpha } } is
•0
•5/9
•5/3
•9/5​

Answers

Answered by TMarvel
1

Answer:

5/3

Step-by-step explanation:

 {y}^{2}  - 5y + 9 = 0 \\  =  > y =  \frac{5± \sqrt{ {5}^{2}  - 4 \times 9 \times 1} }{2}  \\  =  > y =  \frac{5± \sqrt{ - 11} }{2}  \\  =  > y =  \frac{5±i \sqrt{11} }{2} \\  =  >  \frac{5 + i \sqrt{11} }{2}  \: or \:  \frac{5 - i \sqrt{11} }{2}

now putting those values in

 \sqrt{ \frac{ \alpha }{ \beta } } +  \sqrt{  \frac{ \beta }{ \alpha } } \\  =   \sqrt{ \frac{ \frac{5 + i \sqrt{11} }{2} }{ \frac{5 - i \sqrt{11} }{2} } }  + \sqrt{ \frac{ \frac{5  -  i \sqrt{11} }{2} }{ \frac{5  +  i \sqrt{11} }{2} } } \\  =   \sqrt{ \frac{5 + i \sqrt{11} }{5 - i \sqrt{11} } }  + \sqrt{ \frac{5  -  i \sqrt{11} }{5  +  i \sqrt{11} } }  \\  =   \frac{ { (\sqrt{5 + i \sqrt{11} }) }^{2} +  {( \sqrt{5 - i \sqrt{11} } )}^{2}  }{ \sqrt{(5 + i \sqrt{11})(5 - i \sqrt{11})  } }  \\  =  \frac{5 + i \sqrt{11}  + 5 - i \sqrt{11} }{  \sqrt{ {5}^{2}  -  {(i \sqrt{11}) }^{2}  }  }  \\  =   \frac{10}{ \sqrt{25 + 11} }  \\  =   \frac{10}{6}  \\  =  \frac{5}{3}

Hope it helps :D

Similar questions