Math, asked by Anonymous, 2 months ago


if \: \alpha\:and\: \beta \: are \: the \: zeroes \: of \: the \: polynomial \: f(x) = {ax}^{2} + bx + c \: \: then \:find \: the \: value \: of \:  \frac{1}{ { \alpha }^{2} }  +  \frac{1}{ { \beta }^{2} }
Scroll forward to see the full Question.

Help!!!!!!

Answers

Answered by Anonymous
52

Answer:

 \frac{ {b}^{2}  - 2ac}{c {}^{2} }

_________________________________________

Step-by-step explanation:

Given,

 \alpha\:and\: \beta \: are \: the \: zeroes \: of \: the \: polynomial \: f(x) = {ax}^{2} + bx + c \: \:

f(x) = ax² + bc + c

________________________________

To find,

 \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ \beta  {}^{2} }

____________________________________

Solution,

 \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ \beta  {}^{2} } \\ \\ =  \frac{ \alpha  {}^{2} +  \beta  {}^{2}  }{ \alpha  {}^{2} \beta  {}^{2}  } \\ \\ \\  =  \frac{( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  }{( \alpha  \beta ) {}^{2} }   \\  \\  =     \frac{ \frac{b {}^{2} }{a {}^{2}  }  -  \frac{2c}{a} }{ \frac{c {}^{2} }{a {}^{2} } }  \\  \\  =  \frac{b {}^{2}  - 2ac}{c {}^{2} }

_____________________________________________________________________

Sum of zeroes in a quadratic polynomial

α + β = -b/a = (coefficient of x)/(coefficient of x²)

Product of zeroes in a quadratic polynomial

αβ = c/a = constant term/coefficient of x²

Similar questions