Math, asked by vishupathak94pdpq4a, 1 year ago

 if \alpha and \beta are the zeroes of the polynomial f(x)=x^{2} -5x+k such that \alpha -\beta =1,find the value of k

Answers

Answered by shashankavsthi
6

 \alpha  -  \beta  = 1  -  -  - (1)\\ according \: to \: quadratic \: equation \:  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha   + \beta  = 5 -  -  - (2) \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  = k -  - (3) \\  \\ adding \: eq.(1)and \: (2) \\ 2 \alpha  = 6 \\  \alpha  = 3 \\  \\ put \: value \: of \:  \alpha  \: in \: eq.2 \\  \beta  =  5 -  \alpha  \\ so \:  \beta  = 5 - 3 \\  \beta  = 2 \\  \\ k =  \alpha  \beta  \\ so \\  \\ k = 3 \times 2 \\  \\ k = 6 \: ans.

Sanskriti101199: gud answer!!☺
shashankavsthi: thnkuu!!
vishupathak94pdpq4a: thnxx i did a minor mistake
shashankavsthi: where?
vishupathak94pdpq4a: i put alpha + beta = b/a
vishupathak94pdpq4a: actually it is -b/a
shashankavsthi: ohh!!..silly mistake
vishupathak94pdpq4a: hm..
Similar questions