Math, asked by Dheeraj431, 10 months ago


if \:  \alpha  \: and \:  \beta  \: are \: the \: zeros \: of \: polynomial \: then \: find \: polymial \: whose \: zeros \: are \: 2 \alpha  + 1 \: and \: 2 \beta  + 1

Attachments:

Answers

Answered by BrainlyPopularman
2

ANSWER :

▪︎    {  \bold{ {x }^{2}   - 4x  - 5 =   0 }} \\

EXPLANATION :

GIVEN :

▪︎ A quadratic equation x² - x - 2 = 0 have two roots { \bold{ \alpha  \:  \: and \:  \:  \beta }} \\

TO FIND :

▪︎ A quadratic equation whose roots are { \bold{ (2 \alpha + 1)  \:  \: and \:  \: (2 \beta + 1) }} \\

SOLUTION :

▪︎ Let's compare quadratic equation with standard equation ax² + bx + c = 0 , So that –

a = 1 , b = -1 and c = -2

▪︎ We know that –

 \\  { \bold{ . \: \: \: Sum \:  \: of \:  \:  \: roots \:  \:  =  \alpha  +  \beta  =  -  \dfrac{b}{a} }}

 \\ \implies { \bold { \alpha  +  \beta  =  -  \dfrac{( - 1)}{1} }}

 \\ \implies { \bold { \alpha  +  \beta  =  1 \:  \:  \:  \:  \:  \:  -  -  -  -  - eq.(1)}}

 \\  { \bold{ .  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \:  =  \alpha  .  \beta  =  \dfrac{c}{a} }}

 \\  \implies { \bold{   \:  \:    \alpha  .  \beta  =  \dfrac{ - 2}{1} }}

 \\  \implies { \bold{   \:  \:    \alpha  .  \beta  =   - 2 \:  \:  \:  -  -  -  - eq.(2) }}

☞ Now let's find –

 \\ \implies { \bold{  \: \: \: Sum \:  \: of \:  \:  \: roots \:  \: for \:  \: required \:  \: equation =  (2 \alpha + 1)  + (2 \beta  + 1) }}

 \\  { \bold{ . \: \: \: Sum \:  \: of \:  \:  \: roots \:  \: for \:  \: required \:  \: equation =  2( \alpha  +  \beta )+2 }}

 \\  { \bold{ . \: \: \: Sum \:  \: of \:  \:  \: roots \:  \: for \:  \: required \:  \: equation =  2(1)+2 }} \:  \:  \:  \:  \: [ \: using \:  \: eq.(1) \:]

 \\  { \bold{ . \: \: \: Sum \:  \: of \:  \:  \: roots \:  \: for \:  \: required \:  \: equation =  4  \:  \:  \:  -  -  -  - eq.(3)}}  \\

 \\ \implies { \bold{  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \: of \:  \: required \:  \: equation = (2 \alpha  + 1) .( 2 \beta  + 1) }} \\

 \\  { \bold{ .  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \: of \:  \: required \:  \: equation = 4( \alpha . \beta ) + 2( \alpha  +  \beta ) + 1 }} \\

 \\  { \bold{ .  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \: of \:  \: required \:  \: equation = 4( - 2 ) + 2( 1 ) + 1 }} \\

 \\  { \bold{ .  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \: of \:  \: required \:  \: equation = - 8 + 2 + 1 }} \\

 \\  { \bold{ .  \:  \: Product \: \:  \: of \:  \:  \: roots \:  \: of \:  \: required \:  \: equation = - 5 \: \: \: \: -  -  -  - eq.(4)}} \\

☞ We know that a quadratic equation –

 \\  \implies { \boxed{ \bold{ {x }^{2}   - (sum \:  \: of \:  \: roots)x + (product \:  \: of \:  \: roots) }}} \\

▪︎ Now put the values from eq.(3) and (4) –

 \\  \implies { \boxed { \bold{ {x }^{2}   - 4x  - 5 =   0 }}} \\

Similar questions