Math, asked by siddhantgade762, 6 months ago


if  \cos( \alpha ). \:  \cos( \beta ) . \:  \cos( \gamma )  \: are \: the \: direction \: cosine \: of \: a \: line \: then \: find \: the \: value \: of \:  \sin^{2}  \alpha  +  \sin^{2}  \beta  +  \sin^{2}  \gamma
Please answer ​

Answers

Answered by Anonymous
10

AnswEr :

Given.

 \sf \:  \cos( \alpha ) , \cos( \beta )  \: and  \:  \cos( \gamma )  \: are \: directional \: cosine \: of \: a \: straight \: line.

Let the line = ai + bj + ck and r be the magnitude of the line.

Now,

 \sf \: r =  \sqrt{a {}^{2} +  {b}^{2}  +  {c}^{2}  }

Also,

 \sf \:  \cos( \alpha )  =  \dfrac{a}{r}  -  -  -  -  - (1) \\  \sf  \cos( \beta )  =  \dfrac{b}{r} -  -  -  -  - (2)  \\   \:  \ \sf\cos( \gamma )  =  \dfrac{c}{r}  -  -  -  - -  - (3)

Squaring the above system of equations and adding them,

 \implies \sf \:  \cos {}^{2} ( \alpha )  +  \cos {}^{2} ( \beta )   + \cos {}^{2} ( \gamma )  \\  \\  \implies \sf \:  \dfrac{ {a}^{2} }{ {r}^{2} }  +  \dfrac{b {}^{2} }{r {}^{2} }  +  \dfrac{ {c}^{2} }{r {}^{2} }  \\  \\  \implies \sf \:  \dfrac{ {a}^{2}  +  {b}^{2} +  {c}^{2}  }{ {r}^{2} }  \\  \\ \implies \sf \:  \dfrac{r {}^{2} }{ {r}^{2} }  \\  \\  \implies \: 1

Thus,

  \longrightarrow \sf \:  \cos {}^{2} ( \alpha )  +  \cos {}^{2} ( \beta )   + \cos {}^{2} ( \gamma )   = 1 \\  \\ \longrightarrow \sf \: 1 -  \sin {}^{2} ( \alpha )  + 1 -  \sin  {}^{2}  ( \beta )  + 1 -  \sin {}^{2} ( \gamma )  = 1 \\  \\  \longrightarrow \sf \:   \sin {}^{2} ( \alpha ) +  \sin {}^{2} ( \beta )  +  \sin {}^{2} ( \gamma )  = 3 - 2 \\  \\ \longrightarrow  \boxed{ \boxed{\sf \:   \sin {}^{2} ( \alpha ) +  \sin {}^{2} ( \beta )  +  \sin {}^{2} ( \gamma )   = 1}}

Answered by Anonymous
2

Hope u understood...This is the correct answerr

Attachments:
Similar questions