Math, asked by Typhoone, 9 months ago


if \: \: \\ cosec \alpha + cot \alpha + = p \: \: \: \ \\ then \: prove \: that \\ \cos \alpha = p {}^{2} - 1 \div p {}^{2} + 1

Answers

Answered by moretanvi36
4

Step-by-step explanation:(consider 'A' as alpha)

  • cosecA+ cotA=p
  • 1/sinA+cosA/sinA=p
  • 1+cosA=psinA
  • squaring both the sides,
  • (1+cosA)^=p^(SinA)^
  • (1+cosA)^=p^(1-cos)^
  • (1+cosA)^=p^(1-CosA)(1+cosA)
  • 1+cosA=p^(1-cosA)
  • cosA=p^-1/p^+1
Answered by vishwacharanreddy201
0

refer the answer in the picture........

Attachments:
Similar questions