(1, -2)
(1, 2)
(-1, -2)
(-1, 2)
Answers
Answered by
2
given : if (1 + sinx)(1 + y) dy/dx = -cosx such that y(0) = 1, y(π) = a and (dy/dx)_(x = π) = b
To find : the points (a , b)
solution : here, (1 + sinx)/(1 + y) dy/dx = -cosx
⇒dy/(1 + y) = - cosx/(1 + sinx) dx
⇒ln(1 + y) = - ln(1 + sinx) + C
at x = 0,
⇒ln(1 + y(0)) = - ln(1 + sin0) + C
⇒ln2 = - 0 + C
⇒C = ln2
so, ln(1 + y) = - ln(1 + sinx) + ln2
⇒1 + y = 2/(1 + sinx)
⇒y = (1 - sinx)/(1 + sinx)
now y(π) = 1 = a
now dy/dx = d[(1 - sinx)/(1 + sinx)]/dx = -2/(1 + sinx)²
at x = π, dy/dx = -2/(1 + 0)² = -2 = b
Therefore, (a , b ) = (1, -2)
Similar questions