Math, asked by anilkumarchaurasia96, 1 month ago


if  \: \frac{a}{b} \:  +  \frac{b}{a}  =  \:then \:  {a}^{3}   -  \:  {b}^{3 = }
guies plz.. help me plz. ​

Answers

Answered by AestheticDude
11

Correct Question :-

 \tt \: if \:  \dfrac{a}{b}  +  \dfrac{b}{a}  = 1 \: then \: find \: a^{3}     +  {b}^{3}

Answer :-

  \mapsto\rm \dfrac{a}{b}  +  \dfrac{b}{a}  = 1

Now doing cross-Multiplication,

  \mapsto\rm \dfrac{a^{2}  + b^{2} }{ab} =1

Now, subtracting ab will give as 0 .

  \mapsto\rm a^{2}  + b^{2} - ab  =0

Now , we need to know the formula ,

  \boxed { \pink{\sf{a}^{3}  +  {b}^{3} =  \sf \: (a + b)( {a}^{2}  +  {b}^{2}  - ab)}} {\green \star}

Now finding ,

 \mapsto \sf{a}^{3}  +  {b}^{3} =  \sf \: (a + b) \times 0

 \mapsto \sf{a}^{3}  +  {b}^{3} =  \sf \: a + b \times 0

 \mapsto \sf{a}^{3}  +  {b}^{3}  =  \sf  \bf \underline{\underline{0}}

  \boxed{\rm \: hence \: verified} \dag

Similar questions