Math, asked by bansalchirag30567, 1 month ago

If  \: \frac{(x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2})}{5\sqrt{3} - 5\sqrt{2}} = 1

then find the value of x.​

Answers

Answered by adiwan2
2

x=5

Step by step solution is given in the picture

Attachments:
Answered by Anonymous
72

\qquad Solution:-

\pink{\qquad\leadsto\quad\sf  \dfrac{(x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2})}{5\sqrt{3} - 5\sqrt{2}} = 1}\\

\qquad\leadsto\quad\sf   (x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2}) = 5\sqrt{3} - 5\sqrt{2} \\

\qquad\leadsto\quad\sf x - 2\sqrt{6} =  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} + 5\sqrt{2}}\\

\qquad  \small {\mathfrak {\underline {By \: rationalizing\:  the \: denominator:- }}}

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} + 5\sqrt{2}} \times  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} - 5\sqrt{2}}\\

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =   \dfrac{(5\sqrt{3} - 5\sqrt{2})^{2} }{(5\sqrt{3})^{2}  - (5\sqrt{2})^{2} } \\

\qquad\leadsto\quad\sf x - 2\sqrt{6} =   \dfrac{(5\sqrt{3})^{2}   +  (5\sqrt{2})^{2}  - 2(5 \sqrt{3})(5 \sqrt{2})}{75  - 50} \\

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =   \dfrac{75  +  50  - 50 \sqrt{6} }{25}\\

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =   \dfrac{125 - 50 \sqrt{6} }{25}\\

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =   \dfrac{25(5 - 2 \sqrt{6}) }{25} \\

\qquad\leadsto\quad\sf  x - 2\sqrt{6} =   5 - 2 \sqrt{6}\\

\qquad\leadsto\quad\sf  x  =   5 - 2 \sqrt{6} + 2\sqrt{6} \\

\qquad\leadsto\quad\sf  x  =   5 - \cancel{ 2 \sqrt{6} }+ \cancel{2\sqrt{6}} \\

\qquad \leadsto \underline {\boxed{\pmb{\frak{\pink{ x\:=\:5 \:}}}}}\:\:\bigstar\\\\

\therefore\:\underline{\textsf{Value of x is  \textbf{5}}}.\\\\

Similar questions