Math, asked by shadowsabers03, 1 year ago

If \\ \\ sec \ \theta + tan \ \theta = \frac{7}{5}, \\ \\ then, \\ \\ sec \ \theta - tan \ \theta = \ ?

Answers

Answered by siddhartharao77
115

Answer:

secθ - tanθ = 5/7

Step-by-step explanation:

Given, secθ + tanθ = 7/5

We know that sec²θ - tan²θ = 1.

⇒ (secθ + tanθ)(secθ - tanθ) = 1

⇒ (7/5)(secθ - tanθ) = 1

⇒ (secθ - tanθ) = 5/7


Therefore, secθ - tanθ = 5/7


Hope it helps!


Swarnimkumar22: nice Answer
siddhartharao77: Thank you :-)
siddhartharao77: Thank you :-)
shadowsabers03: Well done, bro. Right answer.
shadowsabers03: Marked as brainliest!
shadowsabers03: Try to answer my other questions.
siddhartharao77: Thank you
shadowsabers03: You're welcome. Try to answer my other questions.
siddhartharao77: sure
Answered by Draxillus
92
given,

sec θ+tan θ=7​/5

we know,

 {a}^{2} - {b}^{2} = (a + b) \times (a - b)

 { \sec( \alpha ) }^{2} - { \tan( \alpha ) }^{2} = 1 \\ <br />= &gt; ( \sec( \alpha) + \tan( \alpha ) ) \times ( \sec( \alpha ) - \tan( \alpha ) ) \\ <br />= &gt; 1 = \frac{7}{5} \times \sec( \alpha ) - \tan( \alpha ) \\<br /> = &gt; \sec( \alpha ) - \tan( \alpha ) = \frac{5}{7}

Thanks

KSHITIJ

Anonymous: Superb :)
Draxillus: thanks bhai
Draxillus: thank @sakshi
Similar questions