Answers
If sin α + cos α = 1, Then, prove that ( sin α - cos α) = ± 1.
- sin α + cos α = 1 .......(1)
- sin α + cos α = ± 1
We know,
★ ( a + b)² = a² + b² + 2ab
Squaring both side of equ(1)
➩ ( sin α + cos α )² = 1²
➩ ( sin² α + cos² α + 2 sin α .cos α) = 1
But,
★ ( sin² α + cos² α ) = 1
➩ ( 1 + 2 sin α .cos α) = 1
➩ 2 sin α .cos α = 0
➩ sin α .cos α = 0 ........(2)
Now, calculate,
- sin α - cos α = ?
we know,
★ ( a - b ) = ±√[(a+b)²-4ab]
So,
➩ sin α - cos α = ±√[(sin α + cos α)² - 4sin α .cos α ]
Keep value by equ(1) and equ(2)
➩ sin α - cos α = ±√[(1)²-4.0]
➩ sin α - cos α = ± √[1-0]
➩ sin α - cos α = ± 1
That's proved.
________________
★ ( sin² α + cos² α ) = 1
★ 2 sin α .cos α = sin 2α
★ cos 2α = sin² α - cos² α
= 1 - 2sin² α
= 2 cos² α - 1
= (1-tan²α)/(1+tan²α)
Given:
To Prove:
Proof:
We know,
★ ( a + b)² = a² + b² + 2ab
Squaring both side of equ(1)
➩ ( sin α + cos α )² = 1²
➩ ( sin² α + cos² α + 2 sin α .cos α) = 1
But,
★ ( sin² α + cos² α ) = 1
➩ ( 1 + 2 sin α .cos α) = 1
➩ 2 sin α .cos α = 0
➩ sin α .cos α = 0 ........(2)
Now, calculate,
sin α - cos α = ?
we know,
★ ( a - b ) = ±√[(a+b)²-4ab]
So,
➩ sin α - cos α = ±√[(sin α + cos α)² - 4sin α .cos α ]
Keep value by equ(1) and equ(2)
➩ sin α - cos α = ±√[(1)²-4.0]
➩ sin α - cos α = ± √[1-0]
➩ sin α - cos α = ± 1