Math, asked by fab13, 11 months ago


if  \\ \sin\alpha  +  \cos\alpha  =1 \\  \\ prove \: that \\  \sin\alpha  - cos \alpha  = ( +  - )1

Answers

Answered by Anonymous
13

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If sin α + cos α = 1, Then, prove that ( sin α - cos α) = ± 1.

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • sin α + cos α = 1 .......(1)

\Large{\underline{\mathfrak{\bf{\pink{To\:prove}}}}}

  • sin α + cos α = ± 1

\Large{\underline{\underline{\mathfrak{\bf{Prove}}}}}

We know,

( a + b)² = a² + b² + 2ab

Squaring both side of equ(1)

➩ ( sin α + cos α )² = 1²

➩ ( sin² α + cos² α + 2 sin α .cos α) = 1

But,

( sin² α + cos² α ) = 1

➩ ( 1 + 2 sin α .cos α) = 1

➩ 2 sin α .cos α = 0

➩ sin α .cos α = 0 ........(2)

Now, calculate,

  • sin α - cos α = ?

we know,

( a - b ) = ±[(a+b)²-4ab]

So,

sin α - cos α = ±√[(sin α + cos α)² - 4sin α .cos α ]

Keep value by equ(1) and equ(2)

➩ sin α - cos α = ±√[(1)²-4.0]

➩ sin α - cos α = ± √[1-0]

➩ sin α - cos α = ± 1

That's proved.

________________

\Large{\underline{\mathfrak{\bf{\pink{Important\:Identity}}}}}

★ ( sin² α + cos² α ) = 1

★ 2 sin α .cos α = sin 2α

★ cos 2α = sin² α - cos² α

= 1 - 2sin² α

= 2 cos² α - 1

= (1-tan²α)/(1+tan²α)

Answered by JanviMalhan
193

Given:

 \bold{ \sin( a )  +  \cos( a )  = 1}

To Prove:

 \bold{ \sin(a)  -  \cos(a)  = \:( +  - )1  }

Proof:

We know,

★ ( a + b)² = a² + b² + 2ab

Squaring both side of equ(1)

➩ ( sin α + cos α )² = 1²

➩ ( sin² α + cos² α + 2 sin α .cos α) = 1

But,

★ ( sin² α + cos² α ) = 1

➩ ( 1 + 2 sin α .cos α) = 1

➩ 2 sin α .cos α = 0

➩ sin α .cos α = 0 ........(2)

Now, calculate,

sin α - cos α = ?

we know,

★ ( a - b ) = ±√[(a+b)²-4ab]

So,

➩ sin α - cos α = ±√[(sin α + cos α)² - 4sin α .cos α ]

Keep value by equ(1) and equ(2)

➩ sin α - cos α = ±√[(1)²-4.0]

➩ sin α - cos α = ± √[1-0]

➩ sin α - cos α = ± 1

Similar questions