Math, asked by CopyThat, 7 days ago

If \;sin\theta+cos\theta=\sqrt{2}, b = \dfrac{\sqrt{2}(sin\theta+cos\theta) }{sin\theta cos\theta } , find\; b?

Answers

Answered by ajr111
13

Answer:

4

Step-by-step explanation:

Given :

\mathrm{sin\theta + cos\theta = \sqrt{2} \ ; \ b = \dfrac{\sqrt{2}(sin\theta + cos\theta)}{sin\theta cos\theta}}

To find :

The value of b

Solution :

\mathrm{sin\theta + cos\theta = \sqrt{2} }

Squaring on both sides,

\mathrm{(sin\theta + cos\theta)^2 = (\sqrt{2})^2 }

\implies \mathrm{sin^2\theta + 2sin\theta cos\theta + cos^2\theta = 2 }

We know that,

\boxed{\mathrm{sin^2x + cos^2x = 1}}

\implies \mathrm{1 + 2sin\theta cos\theta = 2}

\implies \mathrm{2sin\theta cos\theta = 2 - 1}

\implies \mathrm{ 2sin\theta cos\theta = 1}

\implies \mathrm{sin\theta cos\theta = \dfrac{1}{2}}

So, substituting this is b, we get,

\longmapsto b = \dfrac{\sqrt{2}(sin\theta + cos\theta)}{sin\theta cos\theta}

\implies \mathrm{b = \dfrac{\sqrt{2}\times\sqrt{2}}{\bigg(\dfrac{1}{2}\bigg)}}

\implies \mathrm{b = 2 \times 2}

\therefore \underline{\boxed {\mathrm{b  =4}}}

Hope it helps!!

Similar questions