Math, asked by bvamtayaru82, 7 months ago


if \:  \sqrt[2]{x \div 0.0064}   =  \sqrt[3]{0.008}
then the value of x

Answers

Answered by amankumaraman11
2

 \tt{}\sqrt[2]{x \div 0.0064} = \sqrt[3]{0.008} \\  \\   \tt {\bigg( \frac{x}{0.0064} \bigg) }^{ \frac{1}{2} }  = {\bigg( 0.008 \bigg) }^{ \frac{1}{3} }  \\  \\  \tt   \frac{ \sqrt[2]{x}  }{  \sqrt[2]{0.0064} }  =   \sqrt[3]{0.008}  \\  \\ \tt   \sqrt[2]{x}  =  \sqrt[3]{0.008}  \times  \sqrt[2]{0.0064}  \\ \\   \tt{ \sqrt[2]{x} } =   {\bigg(  \frac{8}{1000} \bigg)}^{ \frac{1}{3} }  \times  {\bigg( \frac{64}{10000}  \bigg)}^{ \frac{1}{2} }  \\  \\ \tt  \sqrt[2]{x}  =  \frac{ \sqrt[3]{8} }{ \sqrt[3]{1000} }  \times  \frac{ \sqrt[2]{64} }{ \sqrt[2]{10000} }  \\  \\  \tt \sqrt[2]{x}  = \frac{2}{10}  \times  \frac{8}{100}  \\  \\ \tt  {( \sqrt[2]{x} )}^{2}  =  {( 0.2 \times 0.08 )}^{2}  \\  \tt{}x =  {(0.016)}^{2}  \\ \boxed{  \huge \sf x = \red{ 0.000256}}

Similar questions