Math, asked by anithamsczo, 9 months ago

the base radius and height of a right circular cylinder are 7cm and 3. 5cm the volume of cylinder is

Answers

Answered by sethrollins13
54

Given :

  • Radius of Cylinder = 7cm.
  • Height of Cylinder = 3.5cm.

To Find :

  • Volume of Cylinder.

Solution :

\longmapsto\tt{Radius=7cm}

\longmapsto\tt{Height=3.5cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{22}{\cancel{7}}\times{\cancel{7}}\times{7}\times\dfrac{35}{10}}

\longmapsto\tt{\dfrac{5390}{10}}

\longmapsto\tt\bold{539.0{cm}^{3}}

So , The Volume of Cylinder is 539cm³...

_______________________

  • C.S.A of Cylinder = 2πrh
  • T.S.A of Cylinder = 2πr(r+h)
  • Volume of Cylinder = πr²h

_______________________

Answered by Anonymous
3

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow BASE\:RADIUS\:OF\:A\:CYLINDER\:IS\:7cm

\sf\dashrightarrow HEIGHT\:OF\:CYLINDER\:IS\:3.5cm

\sf\dashrightarrow \pi= \dfrac{22}{7}

\large\underline\bold{TO\:FIND,}

\sf\large\dashrightarrow VOLUME\:OF\:CYLINDER.

.FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: VOLUME\:OF\:CYLINDER= \pi r^2h\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore VOLUME\:OF\:CYLINDER= \pi r^2h

\sf\implies \dfrac{22}{7} \times (7)^2 \times (3.5)

\sf\implies \dfrac{22}{\cancel{7}} \times \cancel{(7)} \times (7)\times (3.5)

\sf\implies 22 \times 7 \times (3.5)

\sf\implies 22 \times 24.5

\sf\implies 539cm^3

\large{\boxed{\bf{ \star\:\: volume\:of\:cylinder\:= 539cm^3\:\: \star}}}

\large\underline\bold{VOLUME\:OF\:CYLINDER\:IS\:539cm^3}

_________________

Similar questions