Answers
Answer:
m² - n² = 4√mn
Step-by-step explanation:
Note: Your questions seems to be incorrect.It should be tanθ-sinθ=n.
Given Equations are:
(i) tanθ + sinθ = m.
(ii) tanθ - sinθ = n
(iii)
On adding (i) & (ii), we get
⇒ tanθ + sinθ + tanθ - sinθ = m + n
⇒ 2tanθ = m + n.
(iv)
On subtracting (i) & (ii), we get
⇒ tanθ + sinθ - tanθ + sinθ = m - n
⇒ 2sinθ = m - n.
On solving (iii) & (iv), we get
2 tanθ = m + n
2 sinθ = m - n
-----------------------
4 tanθ sinθ = (m + n)(m - n)
4 tanθ sinθ = m² - n²
4√mn = m² - n²
4√tan²θsin²θ = m² - n²
4√(sin²θ/cos²θ) * sin²θ = m² - n²
4√(1 - cos²θ/cos²θ) * sin²θ = m² - n²
4√(sin²θ - sin²θcos²θ/cos²θ) = m² - n²
4√(sin²θ/cos²θ) - sin²θ = m² - n²
4√tan²θ - sin²θ = m² - n²
4√(tanθ + sinθ)(tanθ - sinθ) = m² - n²
4√mn = m² - n²
Hope it helps!