Math, asked by virat7827, 1 year ago


if \: (x + 1   \div x) = x \\ then \: find(x {}^{3}  + 1 \div x {}^{3} )


Anonymous: Mark my Ans as brainlist...if it helps you.

Answers

Answered by Anonymous
1

Answer \:  \\  \\ Given \:  \:  \:  \: x +  \frac{1}{x}  = x \:  \:  \:  \:  \: find \:  \: x {}^{3}  +  \frac{1}{x {}^{3} }  \\  \\ x +  \frac{1}{x}  = x \\  \\ Cubing \:  \: on \: both \: sides \: we \: have \\  \\ (x +  \frac{1}{x} ) {}^{3}  = x {}^{2}  \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} }  + 3(x +  \frac{1}{x} ) = x {}^{3}  \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} }  + 3x = x {}^{3}  \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} }  = x {}^{3}  - 3x \\  \\ therefore \:  \:  \: x {}^{3}  +  \frac{1}{x {}^{ 3} }  = x {}^{3}  - 3x \\  \\ NOTE \:  \\  \\ ( \alpha  +  \frac{1}{ \beta } ) {}^{3}  =  \alpha  {}^{3}  +  \frac{1}{ \beta  {}^{3} }  + 3 \alpha  \beta ( \alpha  +  \frac{1}{ \beta } )

Answered by rahman786khalilu
0

Step-by-step explanation:

hope it is helpful to you

Attachments:
Similar questions