Math, asked by LEGEND28480, 1 year ago


if \: x = 2 +  \sqrt{3}  \:  \\ then \: find \:  {(x +  \frac{1}{x}) }^{3}

Answers

Answered by Anonymous
6

\huge\rm\color{midnightblue} Solution

 \sf x = 2 + \sqrt{3}

 \sf \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

rationalise the denominator

 \sf \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \sf \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {2}^{2}  - {( \sqrt{3})}^{2}  }

 \sf \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \sf \frac{1}{x}  =  {2  - \sqrt{3} }

now,

  \sf x + \frac{1}{x}  =  {2 +  \sqrt{3} }  + 2 -  \sqrt{3}

\sf x + \frac{1}{x}  = 4

Hence,

\sf {(x + \frac{1}{x}) }^{3}  =  {4}^{3}

 \fbox{\sf {(x + \frac{1}{x}) }^{3}  =  64}


Anonymous: Homework
eswarvts: completed ah??
Anonymous: no
eswarvts: ok when will u free
eswarvts: ??
Anonymous: 7:30
eswarvts: ok can you msg me after 7:30
eswarvts: ???
Anonymous: yes
eswarvts: ok bye for now....!
Answered by Brâiñlynêha
5

\rm\huge\color{palevioletred}Answer:-

=>Check attachment

Attachments:

saiprakash22: hi
saiprakash22: he'll o
Similar questions