Math, asked by khemchandmahour021, 2 months ago


if  x=4 \sqrt{6}  \div  \sqrt{2}  +  \sqrt{3}, find the value of x + 2 \sqrt{2}  \div x - 2 \sqrt{2}  + x + 2 \sqrt{3}  \div x - 2 \sqrt{3}

Answers

Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \: if \:  x = \dfrac{4 \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  \: then \: find \: the \: value \: of

\bf \:  \dfrac{x +  2\sqrt{2} }{x - 2 \sqrt{2} }  + \dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

Process of componendo and Dividendo

If the ratio of a to b is equal to the ratio of c to d,

then the ratio of a + b to a − b is equal to the ratio of c + d to c − d.

If a:b = c:d then (a+b):(a-b) = (c+d):(c-d).

This property is called the componendo and dividendo rule.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\large\underline{\bold{❥︎Step :- 1 }}

\sf \:  ⟼x = \dfrac{4 \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼x = \dfrac{2 \times 2 \times  \sqrt{2}  \times  \sqrt{3} }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼x = \dfrac{(2 \sqrt{2} ) \times (2 \sqrt{3}) }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼\dfrac{x}{2 \sqrt{2} }  = \dfrac{2 \sqrt{3} }{ \sqrt{3}  +  \sqrt{2} }

☆ Apply Componendo and Dividendo, we get

\sf \:  ⟼ \: \dfrac{x + 2 \sqrt{2} }{x - 2 \sqrt{2} }  = \dfrac{2 \sqrt{3}  +  \sqrt{2}  +  \sqrt{3} }{2 \sqrt{3}  -  \sqrt{3} -  \sqrt{2}  }

\sf \:  ⟼ \: \dfrac{x + 2 \sqrt{2} }{x - 2 \sqrt{2} }   = \dfrac{3 \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

\bf \:  ⟼ x = \dfrac{4 \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼x = \dfrac{2 \times 2 \times  \sqrt{2}  \times  \sqrt{3} }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼x = \dfrac{(2 \sqrt{2} ) \times (2 \sqrt{3}) }{ \sqrt{3} +  \sqrt{2}  }

\sf \:  ⟼\dfrac{x}{2 \sqrt{3} }  = \dfrac{2 \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

☆ Apply Componendo and Dividendo, we get

\sf \:  ⟼\dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }  = \dfrac{2 \sqrt{2}  +  \sqrt{3} +  \sqrt{2}  }{2 \sqrt{2} -  \sqrt{3} -  \sqrt{2}   }

\sf \:  ⟼\dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }  = \dfrac{3 \sqrt{2} +  \sqrt{3}  }{ \sqrt{2} -  \sqrt{3}  }

\sf \:  ⟼\dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }  =  - \dfrac{3 \sqrt{2} +  \sqrt{3}  }{  \sqrt{3}  -  \sqrt{2}  }  -  -  - (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

☆ Adding equation (1) and equation (2), we get

\sf \:  ⟼\dfrac{x + 2 \sqrt{2} }{x - 2 \sqrt{2} }  + \dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }

\sf \:  ⟼ = \dfrac{3 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  - \dfrac{3 \sqrt{2} +  \sqrt{3}  }{ \sqrt{3}  -  \sqrt{2} }

\sf \:  ⟼ = \dfrac{3 \sqrt{3}  +  \sqrt{2}  - 3 \sqrt{2}  -  \sqrt{3} }{ \sqrt{3} -  \sqrt{2}  }

\sf \:  ⟼ = \dfrac{2 \sqrt{3} -2  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

\sf \:  ⟼ = \dfrac{2 \cancel{( \sqrt{3} -  \sqrt{2} ) }}{\cancel{( \sqrt{3} -  \sqrt{2} ) }}  = 2

\bf\implies \:\dfrac{x + 2 \sqrt{2} }{x - 2 \sqrt{2} }  + \dfrac{x + 2 \sqrt{3} }{x - 2 \sqrt{3} }   = 2

Similar questions