Math, asked by manojsah7631, 10 months ago

 if \: x = 7 + 4 \sqrt{3},y = 7 - 4 \sqrt{3},then \: find \: the \: value \\ of \: \frac{1}{ {x}^{2} } + \ \frac{1}{ {y}^{2} }

Answers

Answered by naiduasn2009
3

\huge\bf{\underline{\underline{Solution:}}}

 \frac{1}{x}  = 7 - 4 \sqrt{3}  \\  \frac{1}{y}   =  7+ 4 \sqrt{3}  \\  \frac{1}{ {x}^{2} }  +  \frac{1}{ {y}^{2} }  =  \binom{1}{x}^{2}  +  \binom{1}{y} ^{2}   \\  = (7 - 4 \sqrt{3})^{2}  + (7 + 4 \sqrt{3} )^{2}  = \\ 2(49 + 48) = 194

{Hope \: it \: helps}

\huge{Be \: Brainly}

Answered by Anonymous
0

\rule{200}{2}

\huge\boxed{\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}}

\qx = 7 + 4 \sqrt{3}........eq 1

\wy = 7 - 4 \sqrt{3}........eq 2

eq 1 + eq 2

7 + 4 \sqrt{3} + 7 - 4 \sqrt{3}

= 2 (48+49)

= \boxed{\boxed{194}}

Similar questions