Math, asked by anonymouslaughter, 8 months ago


 if \: x = \binom{ \sqrt{3}  +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  and \: y =  \binom{ \sqrt{3} -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  } find  \: {x}^{2}  +  {y}^{2}

Answers

Answered by prince5132
9

GIVEN :-

  • x =[( √3+√2)/(√3-√2)]
  • y = [( √3 -√2)/(√3+√2)]

TO FIND :-

  • The value of x² + y².

SOLUTION :-

value of x,

\tt{x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  }\\  \\  \tt{on \:  \: rationalising \:  \: the \:  \: denominator } \\  \\  \tt{ \implies \dfrac{ (\sqrt{3} +  \sqrt{2} )( \sqrt{3}   +  \sqrt{2}) }{( \sqrt{3} -  \sqrt{2} )( \sqrt{3}  +  \sqrt{2}  )}} \\  \\  \implies \dfrac{( \sqrt{3}  +  \sqrt{2}  {)}^{2} }{( \sqrt{3} {)}^{2}  - ( \sqrt{2}  {)}^{2}  } \\  \\  \implies \tt \dfrac{( \sqrt{3}  {)}^{2} + ( \sqrt{2} {)}^{2}  + 2( \sqrt{3})( \sqrt{2}   ) }{3 - 2} \\  \\  \implies \tt \dfrac{3 + 2 + 2 \sqrt{6} }{1} \\  \\  \implies \tt \red {5 +  2\sqrt{6}}

Value of y,

 \tt{y =  \dfrac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}   + \sqrt{2}  }  }\\  \\  \tt{on \:  \: rationalising \:  \: the \:  \: denominator } \\  \\  \tt{ \implies \dfrac{ (\sqrt{3}  -  \sqrt{2} )( \sqrt{3}    -  \sqrt{2}) }{( \sqrt{3}   + \sqrt{2} )( \sqrt{3}   -   \sqrt{2}  )}} \\  \\  \implies \dfrac{( \sqrt{3}   - \sqrt{2}  {)}^{2} }{( \sqrt{3} {)}^{2}     -  ( \sqrt{2}  {)}^{2}  } \\  \\  \implies \tt \dfrac{( \sqrt{3}  {)}^{2}   +  ( \sqrt{2} {)}^{2}   -  2( \sqrt{3})( \sqrt{2}   ) }{3   - 2} \\  \\  \implies \tt \dfrac{3   +  2  -  2 \sqrt{6} }{1} \\  \\  \implies \tt \red {5  -  2\sqrt{6}}

value of

\tt  {x}^{2} = (5 + 2 { \sqrt{6} })^{2}  \\  \\   \tt  = [( {5}^{2}) + 2 \times 5 \times 2 \sqrt{6} + ( 2 \sqrt{6 } ) {}^{2} ] \\  \\ \tt =  (25 + 20 \sqrt{6 }  + 24) \\  \\   \large{ \boxed{\tt = 49 + 20 \sqrt{6} }}

value of

\tt  {x}^{2} = (5 - 2 { \sqrt{6} })^{2}  \\  \\   \tt  = [( {5}^{2}) - 2 \times 5 \times 2 \sqrt{6} + ( 2 \sqrt{6 } ) {}^{2} ] \\  \\ \tt =  (25 - 20 \sqrt{6 }  + 24) \\  \\   \large{ \boxed{\tt = 49 - 20 \sqrt{6} }}

value of +

\implies \bf \: 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\  \\  \implies \bf \: 49 + 49 + 20 \sqrt{6}  - 20 \sqrt{6}  \\  \\  \large{\boxed{\tt \implies \: 98}}

Hence the value of + is 98.


amitkumar44481: Nice :-)
Similar questions