PLEASE SHOW ME FULL MATH OF THIS PROBLEM.
Answers
Answered by
0
Express a sin θ ± b cos θ in the form
R sin(θ ± α),
where a, b, R and α are positive constants.
Solution:
First we take the "plus" case, (θ + α), to make things easy.
Let
a sin θ + b cos θ ≡ R sin (θ + α)
(The symbol " ≡ " means: "is identically equal to")
Using the compound angle formula from before (Sine of the sum of angles),
sin(A + B) = sin A cos B + cos A sin B,
we can expand R sin (θ + α) as follows:
R sin (θ + α)
≡ R (sin θ cos α + cos θ sin α)
≡ R sin θ cos α + R cos θ sin α
So
a sin θ + b cos θ ≡ R cos α sin θ + R sin α cos θ
Equating the coefficients of sin θ and cos θ in this identity, we have:
For sin θ:
a = R cos α ..........(1)
(in green above)
For cos θ:
b = R sin α .........(2)
(in red above)
Eq. (2) ÷ Eq.(1):
\displaystyle\frac{b}{{a}}=\frac{{{R} \sin{\alpha}}}{{{R} \cos{\alpha}}}= \tan{\alpha}
a
b
=
Rcosα
Rsinα
=tanα
So
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
(α is a positive acute angle and a and b are positive.)
Now we square each of Eq. (1) and Eq. (2) and add them to find an expression for R.
[Eq. (1)]2 + [Eq. (2)]2:
a2 + b2
= R2 cos2 α + R2 sin2 α
= R2(cos2 α + sin2 α)
= R2
(since cos2 A + sin2 A = 1)
So
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
(We take only the positive root)
In summary, if
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
and
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
then we have expressed a sin θ + b cos θ in the form required:
a sin θ + b cos θ = R sin(θ + α)
R sin(θ ± α),
where a, b, R and α are positive constants.
Solution:
First we take the "plus" case, (θ + α), to make things easy.
Let
a sin θ + b cos θ ≡ R sin (θ + α)
(The symbol " ≡ " means: "is identically equal to")
Using the compound angle formula from before (Sine of the sum of angles),
sin(A + B) = sin A cos B + cos A sin B,
we can expand R sin (θ + α) as follows:
R sin (θ + α)
≡ R (sin θ cos α + cos θ sin α)
≡ R sin θ cos α + R cos θ sin α
So
a sin θ + b cos θ ≡ R cos α sin θ + R sin α cos θ
Equating the coefficients of sin θ and cos θ in this identity, we have:
For sin θ:
a = R cos α ..........(1)
(in green above)
For cos θ:
b = R sin α .........(2)
(in red above)
Eq. (2) ÷ Eq.(1):
\displaystyle\frac{b}{{a}}=\frac{{{R} \sin{\alpha}}}{{{R} \cos{\alpha}}}= \tan{\alpha}
a
b
=
Rcosα
Rsinα
=tanα
So
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
(α is a positive acute angle and a and b are positive.)
Now we square each of Eq. (1) and Eq. (2) and add them to find an expression for R.
[Eq. (1)]2 + [Eq. (2)]2:
a2 + b2
= R2 cos2 α + R2 sin2 α
= R2(cos2 α + sin2 α)
= R2
(since cos2 A + sin2 A = 1)
So
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
(We take only the positive root)
In summary, if
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
and
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
then we have expressed a sin θ + b cos θ in the form required:
a sin θ + b cos θ = R sin(θ + α)
Answered by
2
HERE is ur answer meta✌️✌️
Express a sin θ ± b cos θ in the form
R sin(θ ± α),
where a, b, R and α are positive constants.
Solution:
First we take the "plus" case, (θ + α), to make things easy.
Let
a sin θ + b cos θ ≡ R sin (θ + α)
(The symbol " ≡ " means: "is identically equal to")
Using the compound angle formula from before (Sine of the sum of angles),
sin(A + B) = sin A cos B + cos A sin B,
we can expand R sin (θ + α) as follows:
R sin (θ + α)
≡ R (sin θ cos α + cos θ sin α)
≡ R sin θ cos α + R cos θ sin α
So
a sin θ + b cos θ ≡ R cos α sin θ + R sin α cos θ
Equating the coefficients of sin θ and cos θ in this identity, we have:
For sin θ:
a = R cos α ..........(1)
(in green above)
For cos θ:
b = R sin α .........(2)
(in red above)
Eq. (2) ÷ Eq.(1):
\displaystyle\frac{b}{{a}}=\frac{{{R} \sin{\alpha}}}{{{R} \cos{\alpha}}}= \tan{\alpha}
a
b
=
Rcosα
Rsinα
=tanα
So
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
(α is a positive acute angle and a and b are positive.)
Now we square each of Eq. (1) and Eq. (2) and add them to find an expression for R.
[Eq. (1)]2 + [Eq. (2)]2:
a2 + b2
= R2 cos2 α + R2 sin2 α
= R2(cos2 α + sin2 α)
= R2
(since cos2 A + sin2 A = 1)
So
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
(We take only the positive root)
In summary, if
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
and
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
then we have expressed a sin θ + b cos θ in the form required:
a sin θ + b cos θ = R sin(θ + α)
HOPE IT HELPS U ✌️✌️☺️
Express a sin θ ± b cos θ in the form
R sin(θ ± α),
where a, b, R and α are positive constants.
Solution:
First we take the "plus" case, (θ + α), to make things easy.
Let
a sin θ + b cos θ ≡ R sin (θ + α)
(The symbol " ≡ " means: "is identically equal to")
Using the compound angle formula from before (Sine of the sum of angles),
sin(A + B) = sin A cos B + cos A sin B,
we can expand R sin (θ + α) as follows:
R sin (θ + α)
≡ R (sin θ cos α + cos θ sin α)
≡ R sin θ cos α + R cos θ sin α
So
a sin θ + b cos θ ≡ R cos α sin θ + R sin α cos θ
Equating the coefficients of sin θ and cos θ in this identity, we have:
For sin θ:
a = R cos α ..........(1)
(in green above)
For cos θ:
b = R sin α .........(2)
(in red above)
Eq. (2) ÷ Eq.(1):
\displaystyle\frac{b}{{a}}=\frac{{{R} \sin{\alpha}}}{{{R} \cos{\alpha}}}= \tan{\alpha}
a
b
=
Rcosα
Rsinα
=tanα
So
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
(α is a positive acute angle and a and b are positive.)
Now we square each of Eq. (1) and Eq. (2) and add them to find an expression for R.
[Eq. (1)]2 + [Eq. (2)]2:
a2 + b2
= R2 cos2 α + R2 sin2 α
= R2(cos2 α + sin2 α)
= R2
(since cos2 A + sin2 A = 1)
So
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
(We take only the positive root)
In summary, if
\displaystyle\alpha= \arctan{\ }\frac{b}{{a}}α=arctan
a
b
and
\displaystyle{R}=\sqrt{{{a}^{2}+{b}^{2}}}R=
a
2
+b
2
then we have expressed a sin θ + b cos θ in the form required:
a sin θ + b cos θ = R sin(θ + α)
HOPE IT HELPS U ✌️✌️☺️
Similar questions