Math, asked by britiruma6600, 11 hours ago


if  \: x:y = 3:4 , then (7x + 3y ):(7x -3y) =?​

Answers

Answered by MrImpeccable
31

ANSWER:

Given:

  • x : y = 3 : 4

To Find:

  • (7x + 3y) : (7x - 3y)

Solution:

We are given that,

\implies x : y = 3 : 4

This can be written as,

\implies \dfrac{x}{y}=\dfrac{3}{4}

METHOD 1:

\implies \dfrac{x}{y}=\dfrac{3}{4}

Transposing y to RHS and 4 to LHS,

\implies 4x=3y - - - - -(1)

We need to find value of:

\implies (7x + 3y) : (7x - 3y)

\implies \dfrac{7x + 3y}{7x - 3y}

Substituting the value of 3y,

\implies \dfrac{7x + 4x}{7x - 4x}

\implies \dfrac{11x}{3x}

Cancelling x,

\implies\bf\dfrac{11}{3}

METHOD 2:

\implies \dfrac{x}{y}=\dfrac{3}{4} - - - - -(2)

We need to find value of:

\implies (7x + 3y) : (7x - 3y)

\implies \dfrac{7x + 3y}{7x - 3y}

Dividing the numerator and denominator by y,

\implies \dfrac{\dfrac{7x + 3y}{y}}{\dfrac{7x - 3y}{y}}

\implies \dfrac{\dfrac{7x}{y}+ 3}{\dfrac{7x}{y} - 3}

\implies \dfrac{7\left(\dfrac{x}{y}\right)+ 3}{7\left(\dfrac{x}{y}\right) - 3}

Substituting the value of x/y,

\implies \dfrac{7\left(\dfrac{3}{4}\right)+ 3}{7\left(\dfrac{3}{4}\right) - 3}

\implies \dfrac{\dfrac{21}{4}+ 3}{\dfrac{21}{4} - 3}

\implies \dfrac{\dfrac{21+12}{4}}{\dfrac{21-12}{4}}

\implies \dfrac{33}{9}

\implies\bf\dfrac{11}{3}

Hence,

\implies\bf (7x + 3y) : (7x - 3y) = 11 : 3

Similar questions