Math, asked by Shagun305, 1 year ago


if \: x + y  - z = 5 \: and \:  {x }^{2} +  {y}^{2}  +   \\  {z }^{2}   = 62 \: then \: find \: the \: value \: of \\ xy - yz - zx
Hey guys
Can youuuuuuuu solve this question

Answers

Answered by BrainlyConqueror0901
66

Answer:

\huge{\pink{\boxed{\green{\sf{xy-yz-zx=\frac{-37}{2}}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  { \orange{given}} \\  {\pink{ \boxed{ \green{ x + y - z = 5}}}} \\  {\pink{ \boxed{ \green{ x ^{2}  + y^{2}   +  z^{2} =62 }}}}  \\   \\  {\blue{to \: find}} \\ {\purple{ \boxed { \red{xy - yz - zx = ?}}}}

According to given question

We know the formula of (x+y-z)^2

 \to (x + y - z)^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}   + 2xy - 2yz - 2zx \\  \to  -({5})^{2}  =  62 + 2(xy - yz - zx) \\  \to 25 - 62 = 2(xy - yz - zx) \\  \to   -37 = 2(xy - yz - zx) \\  \to xy - yz - zx =  \frac{ - 37}{2}  \\  { \pink{ \boxed { \green{\therefore{xy - yz - zx =  \frac{ - 37}{2} }}}}}

_________________________________________

Similar questions