Math, asked by richa522, 1 year ago


in \: a \:  \triangle{abc} \angle{c} = 90 \: and \:  \tan(a)  = 1 by{ \sqrt{3} }. \\ find \: the \: values \: of -  \\  \sin(a)  \times  \cos(b)  +  \cos(a)  \times  \sin(b)

Answers

Answered by Anonymous
2

Step-by-step explanation:

a/b × a/b + c/b ×c/b

a^2 /b^2 + c^2/b^2 =

a^2+c^2 / b^2 =

b^2 /b^2 = 1

answer is 1

hope its help u......

Answered by Anonymous
28

 \huge \underline \textbf{answer - }

Consider a  \triangle{abc}in which  \angle{c} = 90and tan A=1/

 \sqrt{3}

Then tan A =1/ \sqrt{3}

=>BC/AC =1/3

Let BC =x. Then AC = \sqrt{3x}

By Pythagoras theorem,

AB²=BC² +AC²

=>AB² =

( \sqrt{3x} )^2+ x2 = (3^2 ²+ x^2 ) = 4x^2

=>AB² =( \sqrt{4x} )2 = 2x

For T-ratios of  \angle{a}

Base =AC= \sqrt{3x}

Perpendicular =BC =x and hypotenuse =AB=2x.

 \therefore \sin(a)  = BC/AB =x/2x=1/2 and

 \cos(a) =AC/AB = \sqrt{3x }/2

For T-ratios of  \angle{b}

Base =BC= x, hypotenuse =AB =2x

Perpendicular = \sqrt{3x}

 \therefore \sin(b)  = AC/AB = \sqrt{3}/2

And cos B =BC /AB =x /2x =1/2.

( \sin a  \times  \cos b +  \cos a \times  \sin b ) =

1/2 *1/2+ \sqrt{3} /2*sqrt3/2

=(1/4 +1/4)=1


Anonymous: ok dost
Anonymous: @aur @kya @chal @raha @zindagi
Anonymous: me
Anonymous: Fantabulous @bacha❤❤
Anonymous: thank you @raunac ❤️
Anonymous: thanku aunty ❤️
Anonymous: @bass @ab @idhar @baate @nahi @hongi
Similar questions