Math, asked by senboni123456, 4 months ago

 In \triangle ABC, prove that \sin(2A) +\sin(2B) +\sin(2C) \geqslant \frac{3\sqrt{3}}{2}\\

Answers

Answered by Rajshuklakld
5

Solution:-LHS=sin2a +Sin2b+sin2c

as we know that

Sina+sinb=2sin(a+b)/2.cos(a-b)/2

using this here we can write

LHS=2sin2(a+b)/2.cos2(a-b)/2+2sinc.cosc

LHS=2sin(a+b).cos(a-b)+2sinc.cosc

also we know that

a+b+c=180,as they are the angles of triangle,so

a+b=180-c

LHS=2sin(180-c).cos(a-b)+2sinc.cosc

LHS=2sinc.cos(a-b)+2sinc.cos{180-(a+b)}

LHS=2sinc.cos(a-b)+2sinc.-cos(a+b) {cos(180-a)=-cosa}

LHS=2sinc{cos(a-b)-cos(a+b)}

LHS=2sinc{2sin(a-b+a+b)/2×sin(b+a-a+b)/2

LHS=4sinc×sin(2a/2)×sin(2b/2)

LHS=4sina.sinb.sinc

now,we can write sinc=sin(180-a-b)

LHS=4sina.sinb.sin(a+b)

LHS=4sina.sinb.{sinacosb+sinbcosa}

LHS=4sin^2asinbcosb+4sin^2bsinacosa

let

Z=4sin^2asinbcosb+4sin^2bsinacosa

dZ/da=8sina.cosa.sinbcosb+4sin^2b(cos^2a-sin^2a)

dZ/da=8sina.cosa.sinb.cosb+4sin^2bcos^2a-4sin^2bsin^2a

equating it to zero we get

4(2Sina.cosa.sinb.cosb+sin^2bcos^2a-

sin^2bsin^2a)=4sinb(2sina.cosa.cosb-sinbsin^2a+sinb.cos^2a)=0

2sina.cosb.cosa+sinb.cos^2a-sinb.sin2^a=0 .i)

now

dZ/db=4sin^2a(cos^2b-sin^2b)+8sinb.cosb.sina.cosa

dZ/db=4sin^2acos^b-4sin^2asin^2b+

8sinb.cosb.sina.cosa

dZ/db=4sina(sina.cos^2b-sina.sin^2b+

2sinb.

cosa.cosb)=0

sina.cos^2b-sina.sin^2b+2sinb.cosa.cosb=0. .ii)

now equating i) and ii) we get

2sina.cosb.cosa+sinb.cos^2a-sinb.sin^2a=2sinb.cosa.cosb+sina.cos^2b-sina.

sin^2b

now, comparing the terms of first and second, we get

a=b

similary differentiating the term with respect to c and b we will get

b=c

so,we can say a=b=c

also,a+b+c=180

3a=180

a=60

a=b=c=60

this shows that, maximum value of sin2a.sin2b.sin2c will be at a=b=c=60

putting this we get

max. value=4×sin60×sin60×sin60=3√3/2

hence

Sin2a.sin2b.sin2c < or=3√3/2

Answered by Anonymous
4

Can you explain the differentiation process a bit more.

Similar questions