Math, asked by Anonymous, 1 year ago


 \int \:  \frac{x - 3}{ ({x - 1}^{3} )  } {e}^{x}  dx \\  \\

Integration

Answers

Answered by kaushik05
78

 \huge \mathfrak{solution}

Let

I =  \int \frac{x - 3}{( {x - 1)}^{3} }  {e}^{x} dx \\  \\  \rightarrow \int \:  \frac{x - 1 - 2}{( {x - 1)}^{3} }  {e}^{x} dx \\  \\  \rightarrow \int \:  {e}^{x} ( \frac{x - 1}{( {x - 1)}^{3} }  -  \frac{2}{( {x - 1)}^{3} } )dx \\  \\  \rightarrow \int {e}^{x} ( \frac{1}{( {x - 1)}^{2} }  -  \frac{2}{(x - 1)^{3} } dx

Now ,

Let

f(x) =  \frac{1}{ {(x -  1) }^{2} }

differentiate w.r.t x we get ,

 \implies \:  \frac{ - 2}{ {(x - 1)}^{3} }

As we know that :

 \boxed{  \red{\bold{ \int \:  {e}^{x} (f(x) +  \frac{d}{dx} (f(x)))dx =  {e}^{x} f(x)}}}

Now compare with this we get ,

 \bold{I =  \frac{ {e}^{x} }{ {(x - 1)}^{2} }  + c}

Answered by Anonymous
34

Answer:

\large\boxed{\sf{ \frac{ {e}^{x} }{ {(x - 1)}^{2} }  + c}}

Step-by-step explanation:

W have to integrate the following expression,

 \displaystyle \int \frac{x - 3}{ {(x - 1)}^{3} }  {e}^{x}  \: dx

On Simplifying,

 = \sf{ \displaystyle \int \frac{x - 1 - 2}{ {(x - 1)}^{3} } {e}^{x}  \: dx} \\  \\  \sf{ = \displaystyle \int {e}^{x} ( \frac{x - 1}{ {(x - 1)}^{3} }  -  \frac{2}{ {(x - 1)}^{3} } ) \: dx} \\  \\   \sf{= \displaystyle \int  {e}^{x} ( \frac{1}{ {(x - 1)}^{2} }  -  \frac{2}{ {(x - 1)}^{3} } ) \: dx}

Now, let's assume that,

 \sf{g(x) =  \dfrac{1}{ {(x - 1)}^{2} }}

Differentiating both sides,

  \sf{=  >  {g}^{'}(x) =  -  \dfrac{2}{ {(x - 1)}^{3} }}

Therefore, We have,

  \sf{= \displaystyle \int {e}^{x} (g(x) +  {g}^{'} (x)) \: dx} \\  \\  \sf{ =  {e}^{x} g(x) + c} \\  \\  \sf{ =  {e}^{x}  \times  \frac{1}{ {(x - 1)}^{2} } + c}  \\  \\  \sf{ =  \frac{ {e}^{x} }{ {(x - 1)}^{2} }  + c}

Concept Map :-

  •  \sf{\displaystyle \int {e}^{x} (g(x) +  {g}^{'} (x)) \: dx =  {e}^{x} g(x) + c}
Similar questions