Math, asked by TbiaSupreme, 1 year ago

 \int\limits^2_0  (6x²-2x+7)dx ,Obtain the given integrals as the limit of a sum.

Answers

Answered by rohitkumargupta
2
HELLO DEAR,


GIVEN:-
\sf{\int\limits^2_0 (6x^2-2x+7)dx}

so, \sf{\int\limits^2_0 (6x^2*dx - 2x*dx + 7*dx)}

\sf{ [6x^3/3 - 2x^2/2 + 7x]^2_0}

\sf{[2*(8) - (4) + 7(2)]}

\sf{[16 - 4 + 14]}

\sf{26}


I HOPE ITS HELP YOU DEAR,
THANKS
Answered by abhi178
0
we have to get the value of \int\limits^2_0{(6x^2-2x+7)}\,dx

we know, \int{x^n}\,dx=\left[\frac{x^{n+1}}{n+1}\right]+C

\text{here,}\int\limits^2_0{(6x^2-2x+7)}\,dx\\\\\\=\int\limits^2_0{6x^2}\,dx-\int\limits^2_0{2x}\,dx+7\int\limits^2_0{dx}\\\\\\=6\int\limits^2_0{x^2}\,dx-2\int\limits^2_0{x}\,dx+7\int\limits^2_0{dx}\\\\\\=6\left[\frac{x^3}{3}\right]^2_0-2\left[\frac{x^2}{2}\right]^2_0+7\left[x\right]^2_0\\\\\\=2\times(2)^3-(2)^2+7\times2\\\\\\=16-4+14=26
Similar questions
Math, 1 year ago