Math, asked by TbiaSupreme, 1 year ago

 \int\limits^2_0 (eˣ-x)dx,Obtain the given integrals as the limit of a sum.

Answers

Answered by rohitkumargupta
1
HELLO DEAR,

\sf{\int\limits^2_0 (e^x - x)\,dx}

\sf{\int\limits^2_0 (e^x.dx - x.dx)}

\sf{[e^x - x^2/2]^2_0}

\sf{[e^2 - e^0 -  (4)/2]}

\sf{(e^2 - 1 - 2)}

\sf{(e^2 - 3)}


I HOPE ITS HELP YOU DEAR,
THANKS
Answered by abhi178
0
we have to get the value of \int\limits^2_0{(e^x-x)}\,dx

we know, \int{e^x}\,dx=e^x+C

\int{x^n}\,dx=\left[\frac{x^{n+1}}{n+1}\right]+C

\int\limits^2_0{(e^x-x)}\,dx\\\\\\=\int\limits^2_0{e^x}\,dx-\int\limits^2_0{x}\,dx\\\\\\=[e^x]^2_0-\left[\frac{x^2}{2}\right]^2_0\\\\\\=(e^2-e^0)-\frac{1}{2}(2^2-0)\\\\\\=e^2-1-2=e^2-3
Similar questions
Math, 1 year ago