Math, asked by TbiaSupreme, 1 year ago

 \int\limits^2_1 1/x(1+x²) dx  ,Evaluate the given integral expression:

Answers

Answered by rohitkumargupta
4
HELLO DEAR,



GIVEN:-
\sf{\int\limits^2_1 dx/x(1 + x^2)}

now, by partial fraction,
1/x(1 + x²) = (Ax + B)/(1 + x²) + C/x

1 = Ax² + Bx + C + Cx²

1 = x²(A + C) + Bx + c

C = 1 , B = 0 , A + C = 0 => A = -1

SO, \sf{\int\limits^2_1 [-x/(1 + x^2) + 1/x].dx}

\sf{-\int\limits^2_1 [ x.dx/(1 + x^2) + \int\limits^2_1 dx/x]}

put (x² + 1) = t => 2x.dx = dt
also, [x = 2 , t = 5] and [x = 1 , t = 3]

so, \sf{-1/2\int\limits^5_3 dx/t + [log|x|]^{^2}_1}

= \sf{-1/2[log|t|]^{^5}_3 + [log|2| - log|1|]}

= \sf{-1/2[log|5| - log|3|] + log|2|]}

= \sf{log2 - log3 - 1/2log5}


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions
Math, 1 year ago
Math, 1 year ago