Math, asked by TbiaSupreme, 1 year ago

 \int\limits^4_0 dx/√12+4x-x² ,Evaluate the given integral expression:

Answers

Answered by rohitkumargupta
2
HELLO DEAR,



GIVEN:-
\sf{\int\limits^4_0 dx/(\sqrt{12} + 4x - x^2)}

= \sf{\int\limits^4_0 dx/[-(x^2 - 4x + 4 - 4 - \sqrt{12})]}

= \sf{\int\limits^4_0 dx/[(4 + \sqrt{12}) - (x - 2)^2]}

= \sf{\int\limits^4_0 dx/[(1 + 3 + 2\sqrt{3}) - (x - 2)^2]}

= \sf{\int\limits^4_0 dx/[(1 + \sqrt{3})^2 - (x - 2)^2]}

= \sf{[1/2(1 + \sqrt{3}) log|{{(1 + \sqrt{3} + (x - 2)}\over {(1 + \sqrt{3} - (x - 2)}}|]^4_0}

= \sf{[1/2(1 + \sqrt{3})[log|{(\sqrt{3} - 1 + 4)\over(3 + \sqrt{3} - 4)}| - log|{(\sqrt{3} - 1 + 0)\over(3 + \sqrt{3} - 0)}|]}

= 1/2(1 - √3) \sf[{log|{(\sqrt{3} + 3)\over(\sqrt{3} - 1)}| - log|{(\sqrt{3} - 1)\over(\sqrt{3} + 4)}|]}


I HOPE ITS HELP YOU,
THANKS
Similar questions
Math, 1 year ago
Math, 1 year ago