Math, asked by PragyaTbia, 1 year ago

\int\limits^a_0 {(2x+1)} \, dx=2; Find the real value of 'a'.

Answers

Answered by Anonymous
1
&lt;I&gt;&lt;b&gt;&lt;a&gt;Hey there ✔✌✌⭐☺⭐⭐☺⭐⭐☺⭐⭐☺⭐⭐☺⭐ here is the answer.......<br />.


hope it helps you ✔✔✌
Attachments:
Answered by hukam0685
0

Answer:

a = -2

a = 1

Step-by-step explanation:

\limits^a__0\int\:(2x+1)\:dx = 2\\

to find the value of a,first integrate the function and put limits than we can find the value of a

\int\:2x\:dx+\int\:1\:dx\\\\=\frac{2x^{2} }{2}+x+C\\\\=x^{2}+x\\

now put the values

[x^{2}+x]\limits^a___0 \,

a^{2}+a=2\\ \\ a^{2}+a-2 =0\\ \\a^{2}+2a-a-2=0\\ \\ a(a+2)-1(a+2)=0\\ \\(a+2)(a-1)=0\\ \\a=-2\\ \\ a=1

Similar questions