Math, asked by lekha1230, 3 months ago


integrate \:  \:  \:   ({ \tan(y) }^{ - 1}  \div 1 +  {y}^{2} ) \:  \times   {e}^{ { \tan(y) }^{ - 1 } }

Answers

Answered by Anonymous
10

Solution:-

 \rm \implies \int \bigg( \dfrac{ \tan  {}^{ - 1}y}{1 +  {y}^{2} }  \times  {e}^{ \tan {}^{ - 1} y} \bigg) dy \\

Using substitution method

 \rm let

 \rm \implies \tan {}^{ - 1} y = t

 \implies \rm \:  \dfrac{d( \tan {}^{ - 1} y)}{dy}  =  \dfrac{dt}{dy}

 \rm \implies \:  \dfrac{1}{1 +  {y}^{2} }  =  \dfrac{dt}{dy}

 \rm \implies \:  \dfrac{1}{1 +  {y}^{2} } dy = dt

Now put the value

\rm \implies \int \bigg( \dfrac{ \tan  {}^{ - 1}y}{1 +  {y}^{2} }  \times  {e}^{ \tan {}^{ - 1} y} \bigg) dy \\

 \rm \implies \int( t \times  {e}^{t}  \: )dt \\

Now using Integration By part (UV method )

 \rm \implies \int(uv)dx = u \int  vdx -  \int    \bigg\{ \bigg( \frac{du}{dx}  \bigg) \int  v \: dx  \bigg\}dx \\

SO let

 \rm u = t \:  \: and \:  \:  {e}^{t}  = v

Now

 \rm \implies \: t \int {e}^{t} dt -  \int \bigg( \dfrac{dt}{dt}  \bigg( \int {e}^{t} dt \bigg) \bigg)dt \\

 \implies  \rm \: t {e}^{t}  -  \int(1 \times  {e}^{t} )dt \\

 \implies \rm \: t {e}^{t}  -  {e}^{t}  + c

Now put the value of t

 \rm \implies \:  \tan {}^{ - 1} y  \times  {e}^{  \tan {}^{ - 1} y}  -  {e}^{  \tan {}^{ - 1} y}  + c

Answer

\rm \implies \:  \tan {}^{ - 1} y  \times  {e}^{  \tan {}^{ - 1} y}  -  {e}^{  \tan {}^{ - 1} y}  + c

 \rm \implies {e}^{ \tan {}^{ - 1} y } ( \tan {}^{ - 1}y  - 1) + c

Similar questions