Math, asked by llBurlyRosell, 1 day ago


 \large \boxed{  \red{✿} \bf{ \color{hotpink}Question:}}
If the diagonals of a rhombus are 12 cm and 5 cm, find the perimeter of the rhombus.

❄don't spam ✖
:)​

Answers

Answered by Oodleslt
22

Given:

  • the diagonals of a rhombus are 12 cm and 5 cm,

To Find:

  • the perimeter of the rhombus = ?

Solution:

We know that,

the side of rombhus =   \small{2 \sqrt{d_{1} ^{2}  \times d_2 ^{2}  }}

 \space

: \longrightarrow \:  \:  \frac{1}{2}  \sqrt{(12) ^{2} + (5) ^{2}  }

 \space

: \longrightarrow \:  \:  \frac{1}{2}  \sqrt{144 +   52}

 \space

: \longrightarrow \:  \:  \frac{1}{2}  \sqrt{169}

 \space

: \longrightarrow \:  \:  \frac{1}{2}  \times 13

 \space

: \longrightarrow \:  \:   \tt{\frac{13}{2}  \: cm}

 \space

 : \longrightarrow \:  \:  \bf{ \red{6.5  \: \green{cm}}}

 \space

The perimeter = 4 × side = 4 × 6.5 = 26 cm

Therefore, the perimeter = 26 cm.

\\ {\underline{\rule{300pt}{5pt}}}

Answered by Shreyanshijaiswal81
3

Let p = 12 and q = 5

Perimeter of rhombus = 2√p^2 + q^2

Perimeter of the rhombus = 2√12^2 + 5^2

= 2√144 + 25

= 2√169

= 2 × 13 = 26cm

\begin{gathered}\\ {\underline{\rule{300pt}{5pt}}} \end{gathered}

Similar questions